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actively or ii. a fully automatic mode.  Some features of PSTP are general 
mechanism for specifying which chains are to be retained and manipulated 
an automatic procedure for storing and retrieving information about 
chains when this information is requested, the capability of specifying an 
ordering function which can be used for specifying search strategies, and 
a powerful set of comnands. Results of an experiment testing some simple 
search strategies and comparisons with results from other theorem proving 
studies are presented. 
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The Programmable Strategy Th?orsm Prover: 

An Implementation of the Linear ilESON Procedurevr 

by 

Hark E. Stieke I 

Abstract 

The Programmable Strategy Theorem Prover (PSTP) is a theorem proving 
program for the first order predicate calculus using the linear HESON 

procedure as the inference system. The linear MESON procedure is a new 
variant of the model elimination theorem proving procedure for theories 
With or uithout equality which is an affirmation rather than a refutation 
procedure. It is profitably viewed as an extension of the problem- 
reduction method. The fundamental element of a linear MESON procedure 
deduction, the chain, is a representation of a set of goals to be solved 
and their supergoals. PSTP is designed to be used interactively or in a 
fully automatic mode. Some features of PSTP are a general mechanism for 
specifying which chains are to be retained and manipulated, an automatic 
procedure for storing and retrieving information about chains when this 
information is requested, the capability of specifying an ordering fi.notion 
which can be used for specifying search strategies, and a powerful set of 
commands. Results of an experiment testing some simple search strategies 

and comparisons with results from other theorem proving studies are 

presented. 
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0. Introauction 

The first section of this report describes a new theorem proving 

procedu-e for the first order predicate calculus, the linear MESON 

procedure, a variant of nodel elimination. Although the linear MESCN 

procodur« is not lubttantial ly more pouerful than related rotoiution 

procedures except in the capabiUty for restriction or differential 

treatment of mferen-.e^ by particular implicativa forms cf the axioms, it 

represents a significant increase in the "naturalness" of proofs by 

complete inference systems because it can be viauad as an extenaion of the 

problem-reduction method [9], 

In addition to the- standard "subgoaling" mechanism of the problem- 

reduction method iby uh.ch 3 goal is replaced by a set of subgoaI? whose 

solution constitutes a solution to the goal) represented in the linear 

MESON procedure by the extension operation, the linear fiESON procedure 

provides a mechanism for solving a goal one ot uhose subgoa Is is its 

logical negation requiring reasoning by contradiction (the reduction 

operation), an operation tor eliminating duplicate goals (factorization), 

and operations for solving problems involving the equality relation (p- 

extension, p-reduction) without requiring full axiomatization of its 

properties. These added inference operations result in a complete 

inference system for the first order predicate calculus with equality. 

The second section describes the underlying concepts and overall 

design of the Programmable Strategy Theorem Prover (PSTP), a theorem 

proving program employing the linear HESGN procedure as its inference 

system and designed to be used interactively or fully automatically 

__ .__._^_ __^___^_ M ■  --       
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Although restricted to using the linear MESON procedure as iis inference 

system, PSTP provides substantial flexibility in specification of search 

strategies, both in terms of deletion criteria (such as use of length, 

level, and depth bounds) and of the order in uhich inference operations are 

to oe performeo (such as depth first, breadth first, or diagonal search 

strategies). 

The third section oresents the resul's of a performance study on a set 

of problems previously tested in two other theorem proving performance 

studies. Some conclusions are drawn concerning relative merits of tested 

search strategies on empirical and philosophical grounds and the power of 

the linear flESQN procedure relative to other procedures as exemplified by 

results from the other studies. 
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1. The Linear flESCN Procedur-e 

The linear HESON procedure !• a variant of the model e.Mminjtion 

theorem proving procedure; [6,7,8] in uhich (1) each literal of the top 

chain and the derived chains of a deduction is replaced by its complement 

and (2) implications os uell as disjunctions are permitted as axioms. It 

is also the linear form of the HESON procedure [9] specified for goa I- 

subejoal trees (HESON stands for "model eiiminatlon subgoal oriented"). 

Advantages of the linear MESON pr-ocedure are (i) the linear MESON 

pro edur-e. though logical Ig equivalent to model ei imlnat ion, has the form 

of an affirmation rather than a refutation procedure and its proofs have a 

very natural interpretation in terms of goaI-subqoaI trees and (2) the 

linear MESON procedure has greater expressive power than a'ternative 

procedures In tne potential use of implications rather than disjunctions to 

restrict application of inference operations to certain literals of axioms 

or (by replacing a difjunction by more than one implication) to facilitate 

differential treatment of the various implicative forms of axioms during 

the search for a solution (thil capability is shared by modei elimination 

in whicn each length n input clause generates n auxiliary chains orly the 

last literal of which can De matche* in inference operations). 

In a theorem proving program permitting interaction between human user 

and mechanical proof procedure, it is desirable that as human-oriented a 

procedure as possible b« employed. While it is correctly argued that aM 

resolution type theorem proving procedures are machine-oriented and 

notoriously unsuited to extensive human computation, it is our contention 

that  the  linear MESON procedure :s more human-oriented  than other 

.» 
resolution related procedures. 

I 

■ ^ 



■«(«■■WTI^«pr^^^™^^»<l^^^^»"^-™w"•""-"■ ■ '   '        "       •" •    •• "-      ' 

This is a direct consequence of the relationship of the linear flESON 

procedure uith the problem-reduction method. The linear MESON procedure is 

an extension of the problem-reduction method which is complete for the 

first order predicate calculus with equality. It augments the problem- 

reduction method by inference operations which perform reasoning by 

contradiction (reduction),        which        eliminate        duplicate        subgoa I s 

(factorizction),   and which deal  with the equality relation   (p-extension,   p- 

reduct ion). 

The linear MESON procedure represents the state of a search for 

solution as a set of chains. Each chain represents a subtree of the search 

space. The solution of all the subgoals represented in a chain constitutes 

a solution of the ton goal. Different chains represent different 

alternative partial   aotutioni of  the top goal. 

More specific claims of the linear MESON procedure being human- 

oriented are (1) it is an affirmation rather than a refutation procedure. 

(2) in keeping literals ordered in a chain, it automatically prevents (in 

goal-subgoal tree terms) the start of an attempt to solve another subgoaI 

in the chain until the current one is solved, and (3) it is a procedure 

which remains complete if only input deductions are used. An input 

deduction is a deduction in which each element of the deduction (a linear 

MESON procedure chain) is derived by an inference operation applied to its 

predecessor or   its predecessor and an  (input)  axiom. 

In combination, the last two items permit the ueer to focus his 

attention on a much smaller subset of the available data than is possible 

for many resolution based procedures. 

In   preparing   a  problem   for   ,nput   to   the   linear   MEOON   procedure,    the 

■     -  
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input formula is first converted to prenex form with its matrix in the form 

of -3 conjunction of assertions implying a conclusion. An assertion is a 

(possibly empty) conjunction of literals (.antecedents) implying a 

disjunction of literals (consectuents). Note that if there are no 

antecedents in the assertion, the assertion is just a disjunction of 

''tera,s (di s iuncts). i.e., a clause. A conclusion is a conjunction of 

literals.     Schematically,   the  transformed  formula   is   in  the  form 

Q({AlA...AA;,rCi v...vCJ   A  ...  A  (A^A.^AA^-C'V. ..vC;^   i   (G,A.../NG.)) 

where A,   C and G denote   literals,  Q denotes a   list  of  quantifiers,   and p>l, 

q>l,   each ■ *0,   each rv il. 

The transformed formula is then Skolemized by (1) replacing for each 

universal quantifier in the prefix all occurrences of the quantified 

variable in the matrix by a unique Skolem function with all the 

exi stentially quantified variables whose quantifiers precede the universal 

quantifier in the prefix as arguments and (2) deleting the quantifier 

pref i x. 

An     alterndte     input     form    for     the     linear    HESQN    procedure     is     a 

conjunction of  quantified assertions   implying a conclusion.     Schematically, 

Q.CA, A...AAl%rciv...vCJ  A ...  A QplA1', A. ..AAI^C1V..VC;|)  ■» Q^C, A. .. AG%) 

where A,   C  and G  denote   literals,   Q denotes a   list  of  quantifiers,   and  p>l, 

q>l,   each m  >0,   each n >i. 

This input form is Skolemized by (1) repldcing in each assertion all 

occurrences of each existentially quantified variable by a unique Skolem 

function whose arguments are the variables of universal quantifiers 

preceding the existential quantifier, (2) replacing in the conclusion all 

occurrences   of   each   universally   quantified   variable   by   a   unique   Skolem 

-- -  
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function    whose    arguments    are    the   variables   of    existential    quantifiers 

preceding   the  universal   quantifier,   and   (3)   removing  all   quantifiers   from 

the   formula. 

Example.      The   problem   is:    if   a   is   a   prime   number   and   a   times    the 

square  of   some number  u   is b  then a divides b.     The   initial   formula   is; 

VxVyVzVw   (prime(x)   A yVf2=ui A dividesix.wi 
-♦ di videslx.y1   v di videslx.z)) 

A Vx  xVfx««square(x) 
A  VxVyVz   (xvfy=z  -»  yVfX = z) 
A VxVyVz   (xVfy=z  -» d i vides (x, z)) 
A 3u a-.vsquare (u) =square(b) 
A pr i me(a) 

-» di vides(a,b) 

The SKolemized   form ready  for   input   co  the   linear  flESON procedure   is: 

(prime(x)   A y.vz^u f\ divideslx.w)   -♦ divides{x,y)   v di Vides(x, z)) 
A x>vx=square (x) 
A    fy;fy = z   -»  yvVx=z) 
A   (xivy=z  -♦  di v i des (x, z)) 
A a-.vsquare (c) "square (b) 
A prime(a) 

-» divides(a,t) 

Problems with equality (as above) can be introduced without the need 

for specifying the symmetry, transitivity, and substitutivity axioms if the 

special equality inference operations (p-extension, p-reduction) are used. 

The equality reflexive (x=x) and functionally reflexive axioms (e.g., 

square (x) «square (x), x»vy=xVfy) theoretically are required. The latter are 

not present in the above example since no special equality rules are 

required for the problem's solution. (This is the same as the NUtll example 

studied   in Section 3.) 

By vircue of its derivation from model elimination, the linear tlESON 

procedure is complete (given that a compatible set of inference and 

postprocessing  operations  are  used)   provided   (1)   the   set   of   assertions   is 

_________ ^_^__-a ■MUMM HMMM 



consistent (this requirement is equivalent to the requirement that the ton 

chain of a model elimination deduction be in the minimally unsat i sfl ab I e 

set of input clauses) ana (2) either the disjunctive axiom form is used or 

all implicative forms of each asseriion are included among the assertions. 

The first condition can be eliminated by the addition of a special 

contradiction mechanism defined for the flESON procedure but not included in 

this formulation of the linear MESON procedure which permits the proof of 

any conclusion  from an  inconsistent set of assertions.  The  second 

condition can sometimes oe  eliminated in practice since it is often clear 

from the problem structure (as in the case of Horn formulas:' that use of a 

subset of the implicative forms results in the possible deduction of all 

the chains that the disjunctive form would.  Also, although the resulting 

proceaure is, in general, incowpleta it is sometimes desirable to restrict 

the search for a proof by not presenting the procedure with ail  the 

■"nplicative forms of the assertions. 

The fundamental element of a linear FlESON procedure deduction is the 

£haln.  A chain is an ordered sequence of literals.  Two types of literals 

are distinguished: A-I 1terals and B-literals.  B-literals correspond to the 

literal! present in clauses in resolution theorem proving.  A-literals 

record ancestry information and represent (In goal-subgoal  tree terms) 

higher goals.  All the literals in the theorem and axioms are B-literals. 

An A-literal is created in a newly derived chain from a B-literal in the 

parent chain when a ret of literals whose conjunction implies the A-literal 

(a set of subgoals whose solution constitutes a solution to the goal 

represented by the A-literal) is added. 

A linear MESON procedure deduction of chain K from problem P is a 
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sequence <0 Kn of  acceptable tiiains where K0 is the conclusion of P. K 

is K. each K, (l<i<n) is derived from <.., by extension (by an asserti 

C.,). factorization, reduction, p-extension (by an assertion Q.,) or p- 

reduction. and each ClMis an assertion of P or a lemma (see lemma format.on 

operation below). A splutipn of P (a proof of the conclusion of P) is a 

linear HESON procedure deduction of the empty chain from P. In general, 

for the inference system to be complete, the negation of the conclusion 

must be included among the assertions. The definitions of acceptable 

chains and the inference operations are given below. Example proofs 

illustrating most forms of the inference operations appear starting on page 

17. 

natching- If the two arguments to the matching procedure are terms, 

the matching procedure returns the most general unifier of the terms. If 

the two terms are not unifiable, the matching procedure fails. 

If the two ar-uments to the matching procedure are literals and are 

both P9?itivg (unnegated) or both negative (negated) literals with 

unifiable atomic fcrmulje, the matching procedure returns the most general 

unifier of the atumic formulae. If the two arguments are not both positive 

or both negative or the atomic formulae are not unifiable, the matching 

procedure faiIs. 

Extension. The extension operation takes an acceptable chain K and an 

implication (alt., disjunction) C as its arguments. Let K' and C be 

variable disjoint variants of K and C. If the last literal of K' matches a 

consequent (alt., disjunct) of C, the chain consisting of K' followed by 

the antecedents and the complements of the remaining consequents (alt., the 

complements of the remaining disjuncts) of C with matching substitution 
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applied can be inferred. Each literal of the derived chain descende.d from 

a literal of K* is designated to be the same type of literal as its 

ancestor except the last which is designated to be an A-literal; each 

liieral of the derived chain descended from a literal of C is designated 

to be  a B-li teral, 

Factor i zat i on. The factorization operation takes an acceptable chain 

K as its argument. If the last literal of K matches a preceding B-literal 

of K, the chain consisting of K with the last literal removed and Mith 

matching substitution applied can be inferred. Each literal of the derived 

chain   is designated to be  the same type as  its ancestor. 

Reduct ion. The reduction cperation taket jn ccceotable chain K as its 

argument. If the last literal of K matches the complement of a preceding 

A-literal of K, the chain consisting of K with the last literal removed and 

with matching substitution applied can be inferred. Each literal of the 

derived chain   is designated  to be  the same  type as  its ancestor. 

P-extension. The p-extension (''p-" for paramodulat ion) operation 

takes an acceptable chain K and an implication (alt., disjunction) C as its 

arguments. Let K' and C be variable disjoint variants of K and C. (a) If 

a consequent (alt., disjunct) of C is of the form a«=b or b-a where a 

matches a term in the last literal of K', the chain consisting of K' 

followed by the antecedents and the complements of the remaininn 

consequents (alt., the complements of the remaining disjuncts) of C 

followed by a copy of the last literal of K* with a single instance of the 

term matching a replaced by b with matching substitution applied can be 

inferred. Each literal of the derived chain descended from a literal of K' 

is   designated   to  be   the   same   type  of   literal   as   its  ancestor   except   the 
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last which is designated to be an A-literal; each literal of the derived 

chain descended from a literal of C is designated to be a B-literal; the 

last literal of the derived chain (in uhich an instance of a term matching 

a was replaced by b) is designated to be a D-literal.  This form of p- 

extension is calIed p-extension froni an assert ion.  (b) If the last literal 

of K' is of the form a*b or b*a where a matches a term in a consequent 

(alt.,  disjunct) of C,  the chain consisting of K'  followed by the 

antecedents and the coup I taitntl cf the remaining consequents (alt., the 

complements of the remaining disjuncts) of C followed by a copy of the 

complement of the consequent (alt., disjunct) containing the term matching 

a with a single  instance of that term replaced by b with matching 

substitution applied can be inferred.  Each literal o^ the derived chain 

descended from a literal of K' is dejigncted to be the same type of literal 

as its ancestor except the last which is designateu to be an A-literal; 

each literal of the derived chain descended from a literal of C  is 

designated to be a B-literal; the last literal of the derived chain (in 

which an instance of a term matching a was replaced by b) is designated to 

be a B-literal.  This form of p-extensior, is called p-extension ±3.   an 

assert i on, 

P-reduction. The p-reduction ("p-" for paramodulation) operation 

takes an acceptable chain < as its argument. (a) If the last literal of K 

contains a term matching the term a where a preceding A-literal of K '13 of 

the form a*b or b«a, the chain consisting of K followed by a copy of the 

last literal with a single instance of the term matching a replaced by b 

with matching substitution applied can be inferred. Each literal of the 

derived chain descended from a literal of K is designated to be the same 

ie 
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type  of   literal   as   its  ancestor  excopt   the   last   uhich   is  designated   to  be 

an  A-literal;   the   lost   literal   of   the  derived  chain   (in which  an   instance 

of   a   term  matching   a  was  replaced by b)   is  designated   to  be   a  B-literal. 

This   form  of   p-reduction   is  called  p-reduction   from  an  A-literal.      (b)   If 

the   last   literal   of  K   is of   the  form a*b or b^a where a matches a  term   in  a 

preceding    A-literal    of    K    or    .he    last    litaral    of    K    itself,     the    chain 

consisting   of   K    foliowei   by   a   copy   of   the   preceding   A-literal    or    last 

'iteral   with   a   -ingle   instance   of   the   term   matching   a   replaced   by   b   with 

matching  suostitution app•,-d can be  inferred.     Each   literal   of   tne derived 

chain   descended   from  a   literal   of  K   is  designated   to  be   the  same   type   of 

literal   as   its   ancestor   except   the   last   which   is   designated   to   be   an  A- 

litoral;   tha   last   literal   of   the  derived chain   (in which  an   instance   of   a 

term  matching  a  was  replaced by b)   is designated   to  be a B-literal.     This 

form of  p-reduction   is called p-reduction  to an A-literal   or  self. 

If   the  parent   chain  K   ii   the  p-extension  or   p-reduction  operation   is 

itself   derived by  p-extension or p-reduction,   the  created A-lit-ral    in   the 

derived  chain  may   optionally be  omitted with  completeness  unaffected   (see 

[81).     There   is a  tradeoff  here.     If  the A-literal   is omitted,   the derived 

chain   is   shorter   and   easier   to  read,   and   some   future   possible   reductions 

and  p-reductions  may  be  eliminated.     On  tne  other  hand,   especially   if   the 

postprocessing   operation   specifies   rejection   of   chains   containing   an   A- 

I iteral   followed  by  an   identical   A-literal   or  B-litera!,   retention   of   the 

A-literal   nuy   -esult    in   rejection   of   more   chains   as   being   unacceptable. 

For   example,    this   could   prevent   iepeated  p-exiension  by   a=b   from   creating 

an endless  sequence of  chains ending alternately   «n Pa or Pb. 

Postprocessing.      A   postprocessing   operation   takes   a   chain   K    (output 

11 
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from    the   extension,    factorization,    reduction,    p-extension   or   p-reciuction 

open   tion)   as   its  argument  and either rejects K as being non-acceptable  and 

thua   unusable   as   input   to   any   inference   operation   or   transforms   the   chain 

into  an  acceptable  chain.     Hany different  postprocessing  opeiations  can  be 

written uith different  effects regarding efficiency and completeness.     Four 

postprocessing  coerations  are  described   in   the   follouing   table.     The   table 

expresses    possible    relationships   betueen    each    pair    of    literals     in    the 

Chain.       AM     the    actions    correspondin ,    to    true    conditions    are     to    be 

performed  on   the  chain,   except,   of  course,   that   if   the action   is   to  reject 

the   chain    then   no   other   conditions   need   be   checked   or   actions   need   be 

per formed. 

Postprocessing operations 

Cond i t i en 
A-1i teral fol\oueo  by 
ident ical A-i i teral 

A-I i teral followed by 

complementary A-Iiteral 

A-Ii teral followed by 

identical B-li teral 

A-Ii teral followed by 

complementary B-literal 

B-l i teral followed by 
identical A-Ii teral 

B-li teral followed by 

complementary A-Iiteral 

B-li teral followed by 
identical B-literal 

B-l i teral followed by 

complementary B-literai 

STRONG- 
SAVE 

STRCNG- 
DELETE 

UEAK- 
3AVE 

UEAk'- 

DELETE 

Act ion Act ion Act i on A-t ion 
reject 
cha i n 

reject 
cha i n 

reject 
cha i n 

reject 
cha i n 

reject 
chain 

reject 
chain 

reject 
cha i n 

reject 
chain 

reject 
chain 

reject 
cha i n 

reject 
chain 

reject 
cha i n 

delete delete 
following following 
B-literal B-literal 

reject reject 
chain chain 

reject reject 
cha i n chain 

delete delete 
following followin- 
B-literal B-literal 

reject reject 
chain cha i n 
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If ail the action-, of the postprocessing operation specified in the 

table have been performed and the chain is not rejectad, all terminal A- 

literals of the chain are deleted. This terminal A-literal deletion is 

called  contract i on. 

The deletion action associated with the "B-llteral followed by 

identical B-literal" condition is called ground factorization since it 

represents an instantiation-free usage of a generalized factorization 

operation which can delete non-terminal B-literals. Similarly, the 

deletion action associated with the "A-literal followed by complementary B- 

literal" condition is called ground reduction since it represents an 

instantiation-free usage of a generalized reduction operation which can 

delete non-terminal   B-literals. 

Several      additional      conditions     and      actions      can      be      used       in 

postprocessing operations such as the  following which are available   in PSTP 

but   were  not   used   in   the  present  study:    (1)   rejecting  chains  containing  a 

non-terminal   A-literal   that   is an  instance  of  a  unit  axiom   (single   literal 

input   assertion),    (2)   rejecting chains containing  a  non-terminal   A-literal 

that   is  an   instance  of   a ur.it   lemma   (single   liberal   derived assertion,   see 

lemma   formation   operation   below)   by   which   the   anc^cor   chain   could   have 

been   extended   wnen   the   A-literal   was   created,    (3)   deletion   of  B-literals 

which   are   instances  of   unit   axioms,    (4)   deletion  of  B-literals   which   art 

instances    of    unit    lemmas,     (5)    removal    of    all     literals    including    and 

following  the A-literal   in the case of a B-literal   followed by an  identical 

A-literal    (this    is   caHed   factorization   truncation).    (B)   removal    of   all 

literals   including  and   following  the  second A-literal   in   the  case  of   an  A- 

literal    followed   by   a   complementary   A-literal    (this   is   called   reduction 

Irypggt'pn).     All   of   these actions can be shown to preserve completeness. 

13 
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For problems not involving the equality relation, the UEAK-SAVE and 

UEAK-DELETE postprocessing operations yield a complete inference system 

when  the  extension  and  reduction operations  are  used.   The  WEAK 

postprocessing operations correspond closely to the chain admissabi I i ty 

criteria for model eiin-.nat.on of IS].     Also for problems not involving the 

equality  relation.  the  STRONG-SAVE  *nd  STRONG-DELETE  postprocessing 

operations yield a complete inference system provided the factorisation 

oper.jt.on is used in audition to extension and reduction.  The STRONG 

postprocessing operations correspond closely to the chain acceptability 

criteria for strong model  itilination of  [7J .  Note that with these 

postprocessing operations, if the conclusion is variable free, its negation 

need not be included among the astertions since extension by the negation 

of the conclusion In any Deduction from the conclusion uou I d result in a 

non-acceptable chain u.th an A-Uteral folloued by an identical B-l.teral 

or an A-literal folloued by a complementary A-IiteraI. 

For  problems  involving  the equality  relation,  a  postprocessing 

oferation yhlch rejects a chain only if it has an A-literal followed by a 

complementary A-literal  yields a complete  inference system when  the 

extension, reduction, p-extension and ü-reduction operations are used. 

Also  for  problems  involving  the equality relation,  a postprocessing 

operation uhich rejects a chain only if it has a A-literal followed by a 

complementary A-literal or a B-literal followed oy an identical A-literal 

yields a complete inference system provided the factorization operation is 

also used.  This corresponds closely to the chain perm]ssabiIity criteria 

for model elimination with paramodulation of [8].  lie believe (but have no 

proof) tnat for problems involving the equality relation, the UEAK-SAVE and 
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UEAK-DELETE postprocessing operations yield a o^plete inference system 

uhen the extension, reduction, p-extension and p-reduction operUions are 

used and the STRONG-SAVE and STRONG-DELETE postprocessing operations yield 

a complete inference system when the factorization operation is also used. 

The equality reflexive  (x=x) and functionaMy rellexive axioms  (e.g.. 

MK.yUMK.yH theoretically are required in any cat«. 

LeniiDi i-ormation. An additional inference operation is used to create 

nou assertions during contraction. A neu assertion (caMed a lemma) 

consisting of the disjunction of the terminal A-litaral being removed and 

all oreceding A-literals uhose scope {Fee belo.) exceeds the number of A- 

literals betueen them ana the terminal A-Mteral and the complements of all 

preceding B-litera:S unose rcope exceeds the number of A-literals between 

them and the terminal A-literal can be inferred. 

The scope of eacn literal in the conclusion i s 8 and the scope of each 

literal added to a chain in the extension and p-extension operations is 8. 

In  the  factorization and reduction operations  (and also  in ground 

factorization and reduction performed by the poc.processing operation), the 

scope of the leftmost involved literal  is set to the maximum of  i *s 

previous scope and the number of A-literals between it and the rightmost 

involved literal.  In the p-reduction operation, the scope of a literal 

descended from an involved A-literal is set to the number of fol lowing A- 

literals in the derived chain.  Each other literal has the same scope as 

its parent literal in the parent chain. After each contraction operation, 

the scope of each literal is set to the minimum of its previous scope and 

the number of A-literals follouing it in the chain, i.e.. no literal will 

be allowed to have a scope which exceeds the number of following A- 

i i terals. 
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Lemma formation creates assertiono from solved goals. Removal of an 

A-literal by contraction does not mean that the goal it represents has been 

solver; globally, but only that it has been solved in the environmetit of the 

chain of uhich it was a part. Joined in disjunction with the A-literal is 

the negation of each of the assumptions from the chain used in the solution 

of the A-iiteral. Thus, the resulting lemma states either the "solved" A- 

literal is true or one or more of the assumptions was false. The 

assumptions which could be used in the solution of the A-literal am the 

negation of an A-literal (reduction, o-reduction) or a B-literal 

(factorization). The scope mechanism keeps track of the assumptions made 

with respect to the solution of each goal. 

Lemma formation, while it may generate useful assertions during the 

search for a proof, is not required for completeness. 

Several heuristics are availaole to eliminate the generution of 

redundant lemmas such as: (1) the first lemma to be generated after an 

extension operation followed by jero or more factorization or reduction 

operations is always redundant and (2) if the chain has two or morj 

terminal A-literals and the lemma associated witn one subsumes the lemma 

associated with another, the second need not be generoted (specific cases 

of this condition can readily be checked by examining the scopes of the 

I i teraIs i nvoIved). 

gub^umptipn. Redundant chains and assertions can bt eliminated from 

future use by subsumption. One chain is subsumed by another and can thus 

be eliminated if an instance of the latter chain is an initial subsequence 

of the former (sequences of B-literals between A-literals may be freely 

reordered during the subsumption test). One assertion subsumes another if 

IG 
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the chain corresponr'ing to the former assertion subsumes the chain 

corresponding *o the latter (the corresponding chain is formed by making a 

list of B-literals Leinc; the consequents and complemented antecedents of 

implications or disjuncts of disjunctions) and, in the case where the 

subsuming assertion is an implication, no disjunct or consequent of the 

subsumed assertion is matched to an antecedent of the subsuming assertion. 

The latter provision prevents the subsumption of an assertion by another 

implicative form of tne same assertion both of which may be required for 

completeness.  Stronger subsumption rules are possible (see [8]). 

Uith relation to a search strategy, two additional classes of 

subsumption are recognized: (1) forward subsumption is the subsumption of a 

newly createa chain or assertion by a previously available chain or 

assertion and (2) backward subsumotion is the subsumption of a previously 

available chain or assertion by a newly generated chain or assertion. In 

general, completeness is assured only if, when backward subsumption is 

used, it is first chtcked whether the subsuming chain is eliminable by 

forward subsumption. 

Exanples. This and the following proofs illustrate the usage of most 

forms of the inference operations. Chains are represented as linear 

strings of literals with A-literals bracketed. A-literals -epresent 

"opened" goals, i.e., goals for which a solution is currently being 

attempted in the chein. B-literals represent "unopened" goals, i.e., 

subgoals for which an attempt for solution has not yet started. Each A- 

literal is a logical consequence of all the literals to its right; thus, 

the solution of each B-literal to the right of an A-literal solves the A- 

literal while also solving all the other A-literals to the right of the 
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solved   A-literal.      Deductions   are   represented   as   a   vertical    sequences   of 

chains,   the  ancestor  of  each  derived chain being  the chain  above   it.     Each 

derived   chain   is   annotated   to  describe   its  derivation   from   its   ancestor. 

If   a   chain   is   the  result   of   excension  or  p-extension  by  an  assertion  with 

more    than    one    consequent    or    oisjunct,    an   alphabetic    index    is    used    to 

designate   which   consequent   or   disjunct   uias   used.      Indices   are   "a",    "b", 

"c",    etc.,   reaoing   from  right   to   left.     Tne  unannotated  chains   ^t   the   top 

of    each   sequence   of   cnams   are   the   axioms.      Here   and   elsewhere    in    this 

paper,     the    conclusion   and    assertions    of    a   problem    will     frequently    be 

referred  to as  theorem and axioms respectively. 

This   is a proof  that MPa «» Pb)  -♦ a««b. 

I«  fa v Pb first axiom from -(Pa « Pb) 

2.   -Pa v -Pb second axiom  from -(Pa «> Pb) 

3«   a*b theorem  to be established 

4. [a*b]   -Pb -Pb p-extend  to lb 

This operation initiates a proof by contradiction. Assuming a=b 
(the complement of the literal a^b), the truth of -Pb A -Pb 
contradicts Pa v Pb. 

5. [a^b]   -Pb factor 

It is only necessary to prove -Pb once. 

G. [a*b] [-Pbj Pa exteno by 2a 

By axiom 2, if Pa is true then -Po is true. 

7. :a*b] [-Pb] [Pa] Pb p-reduce from A-l iteral 

Again assuming a=b to derive a proof by contradiction, if Pb is 
true then Pa is true. 

8. empty reduce 

In chain 7, subject to the assumption that the conclusion a*b is 
false and that a=b, there are the implications Pb -» Pa and Pa -♦ 
-Pb.  This leads to Pb -. -Pb, a contradiction if Pb is true. 
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Therefore, -Pb must be assumed to be true.  From chain 5. -Pb i 
a»«b, so the theorem is proved. 

The following four examples are adapted with some modification f 

[91. 

POM 

1. B -» C 
2. A A -0 - B 
3. A -. C v -0 
4. A 

5. C 
G. (C] B 

7. tC] IB] A -^D 
8. tC] (Bl A [-D] A < 
3. [C] [B] A [-D] A 

IB. [C] [B] A 
11. empty 

theorem 
extend by 1 
extend by 2 
extend by 3a 
reduce 
factor- 

extend by 4 

1. b<a A a<b ■» a=b 
2. b>a 
3. a<b 
4. b<a 
S. a>B 
G. [a>3] b<a a<b b>8 
7. [a>a] b<a a<b 
8. la>d] b<a 
9. empty 

1. a>a -♦ a>a 
2. -b>a 
3. a>a 
4. axb 
5. [a*bj a>a -b>3 
G. [a*b] a>B 
7. empty 

1. a+b=2;fc -» a*b v a»c 
2. b*c 
3. a+b=2-. ■-C 

4. a»«b 
5. [axb] a+b=2-.vc a*c 
G. [axb] a+b=2vfc   [axe] 
7. [axb] a+b=2ivc 

bxc 

theorem 

p-extenr^ from 1 
extend by 2 
extend by 3 

extend by 4 

theorem 

p-extend to 1 
extend by 2 

extend by 3 

8. empty 

theorem 

extend by lb 

p-reduce from A-literal 
extend by 2 
extend by 3 
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2.   The rrogrammable Strategy Theorem Prrver 

The Programmable Strategy Theorem Proven (PSTP) is a program written 

in UC! LISP [3] for the DECsystem-10 computer implementing the linear HESON 

procedure  as described   in Section 1. 

Tne linear HESON procedure is a good inference system for an 

interactive, programmable strategy theorem prover since, it being an 

extension of the problem-reduction method, it is more human-oriented than 

alternative systems, anu : ts input procedure nature and the relatively 

small number of operations that can be performed on any chain facilitates 

the  design and use of   the programmable  search strategy capability. 

In addition, the I : near HESON procedure is a suitable choice in terms 

of performance since it appears to perform competitively with other 

inference procedures i^nen used as the inference system in a fully automatic 

system. An implementation of the parent model elimination procedure at New 

York University [4] using a depth first search strategy performed 

conpetet i ve I y with a theorem prover employing the set or support refinement 

and unit preference search strategy. Further evidence of the 

competitiveness of imear MESON procedure based systems will be presented 

i n Sect i on 3. 

Cha i n proper t i es. In the design of a theorem proving program, it is 

necessary to allow fur the computation and retention of certain information 

about each chain (clause) generated during the search for a proof. An 

example is the necessity of retaining information on parentage of each 

chain so a proof can be traced when discovered. Another example is the 

computation   of    the    length   of   a   chain   or   the   maximum    level    of    function 
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nesting in the chain if length or depth bounds are being employed. It 

uould be uasteful to always compute and store such information since it may 

not always be needed. Also, the retention of computed information about 

chains should be contingent on such variables as the computational effort 

required to compute the information, frequency of use of the information, 

and cost in memory of storing the information, (A more fundamental 

objection to always storing computed information about a chain is that the 

information might change witn time. For example, the fact that a 

particular chain is the shortest chain in memory will probably be falsified 

in the future.) Another important consideration in the design uf an 

information storage and retrieval mechanism for chains is the ability to 

define new data which can be optionally computed  for any chain. 

This last consideration is especially important in an interactive 

theorem proving program so that the user can cause to be computed whatever 

information  about   a chain  will   be  useful   to  him.     It   i s  a I so   an   important 

consideration   in   the design  of  a   theorem proving program which  allows  user 

specification of  search strategies. 

The   property   storage   and   retrieval   mechanism   for   chains   in   PSTP   was 

designed    to    possess    the    following    characteristics.      With    the    obvious 

exceptions    of    the   number   of    a   chain   and    its   ancestry    information,    no 

information about  a chain   is  computed  unless and until   this   information   is 

requested.      Retaining   the   information   is   a   user   option.     A   new   computable 

datum   about   a   chain  can   be   defined  be   merely   defining   the   LISP   function 

which computes  the  infoi-mation. 

The  mechanism used   is based on the concept of a chain property   list. 

This   is a   list of dotted pairs;   the first component of each dotted pair   is 
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a property name (the access name of a datum about the chain); the second 

component is the value of the property. The information storage and 

rotrieval mechanism functions in the foilowing way. If the value of the 

property named, for example, NLIT (this represents in PS7P the number of 

literals in the chain) is interrogated for a chain, that chain's property 

list is examined for a dotted pair with ',,sx component NLIT. If such a 

dotted pair is found, its second component is the desired information. If 

property NLIT does not appear in the chain property list, the LISP function 

NLIT is evaluated with the chain (including chain property list) as its 

single argument. The value the function NLIT returns is then the desired 

information. Further, if tha LISP atom NLIT has non-NIL value, the 

property name NLIT and newly computed value will be added to the chain 

property   I ist. 

New properties are defined by the DP ("define property") function. 

The DP function takes as arguments a function n.-.me, lambda variable list, 

and expression (just like the UCI LISP DE, DF, and DM functions). It 

creates a LISP function which performs all the chain property list lookup 

and modification optsrations, and evaluates exoression for the argument if 

the property value is not found on the chain property list. For example, 

NLIT is defined in PSTP by evaluating (DP NLIT (CHAIN) (LENGTH (CDDR 

CHAIN))) where LENGTH is the LISP function which computes the length of a 

litt and (CDDR CHAIN) is the location of the list of literals of chain 

CHAIN. (SETQ NLIT T) >■ then evaluated to order retention of values 

computed by  the NLIT  function. 

Some of the property functions already defined in PSTF compu :e the 

number   of   A-literals   in   a   chain   (NALIT),    the   number   of   B-literals    in   a 
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chain (NBLIT), the total number of literals in a chain (NLIT), the maximum 

function depth in a chain (DEPTH), the number of variables in a clain 

(NVAR), the number of LISP CONS operations required to construct a chain 

(SIZE) (this is a good size or complexity function), and the level (number 

of inference operations in the oerivation) of a chain (NEXPAND). 

Chain fi Itgrs.  This property storage and retrieval mechanism supports 

a higher level chain storage and retrieval mec.anism.  Filters provide a 

way of flexibly specifying which chains are to be operated upon and which 

derived chains are to be stored.  Two types of filters are distinguished by 

usage: input filters and output filters.  Input filters a-e employed by the 

user  to specify which chains are to be operated upon.   Only chains 

"selected by" an input chain filter will be processed.  Output filters are 

used to specify which derived chains are to be retained.  A chain must be 

"accepted by" an output filter to be stored.  The general form for a filter 

is a unary LISP function name or lambda expression which returns a non-N!L 

value  if the chain argument is selected or accepted, NIL otherwise. 

Several abbreviated forms are also available: (1) an integer selects or 

accepts a chain with that chain number, (2) a list of integers selects or 

accepts chains with chain numbers in the list, (3) a three element list 

(called a triple) consisting of a binary function name and 2 integers or 

property names selects or accepts chains for which the value of the 

function applied to the integers and property values is non-NIL, and (4) a 

list of triples which selects or accepts chains for which each triple has 

non-NIL value. 

This chain storage and retrieval mechanism is very flexible.  The user 

can designate chains for processing directly by number or by the propertit: 
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they possess and can arbitrarily specify the necessary conditions for a 

newly derived chain to be stored. This user specification of output 

filters is a far more general form of the usual specification of bounds in 

theorem proving programs. 

Search strateau speci ficat ion. One of the most important features of 

PSTP is its capability for specifying the search strategy to be usec in 

searching for a proof. Several thec-em proving programs (e.g., QA3.B [113) 

permit the user to specify a particular combination of refinements of 

resolution (restrictions on pairs of clauses to be used as input to the 

resolution operation (e.g., linear, merging, set of support, model 

refinements)), but the capability for ordering inference operations given a 

particular refinement of resolution is uncommon. PSTP is, of course, 

restricted to using the linear flESON procedure with variations restricted 

to different postprocessing operations, but it does have a general 

capability for specifying search strategies. 

Before describing the search strategy specification capabil'ty of 

PSTP, it is instructive to consider the proof strategy employed in many 

other theorem proving systems in which search strategy is fixed with 

possibly a few parameters which the user can specify to tailor the proof 

search to a particular problem. Thus, the search strategy may be 

fundamentally depth first or perhaps breadth first with a parameter 

specifying the permitted amount of look-ahead using unit preference. Much 

of the control the user has over such systems is the specification of which 

chains to discard. However, even this decision is severely constrained. 

Usually, the user is only permitted to specify the values of a few 

parameters such as the maximum length or function depth of clauses to be 

retained. 
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Ue have seen that output filters generalize the capability of 

specifying retention of chains. Chain order functions provide the 

capabilitij of specifying the order of expansion of the search space. 

Chain ord^r functions. Associated with each list of chains is the 

name of an order function. (The order function is actually a chain 

property function as described above.) Whenever a chain is stored in a 

chain list, it is inserted according to the numerical value of the 

correspondinr order function applied to the chain. The chains with the 

smallest values of the order function are stored at the top of the chain 

list (in case of ties, the more recently stored chains will be on top of 

he chain list). This maintenance of chain lists in sorted order in 

combination with the SEARCH and SEARCH2 commands provides a quite general 

capability for specifying search strategies. 

5earch commands.  The SEARCH command  is -ne of  the  fundamental 

functions for automatically expanding the search space. The normal mode of 

operation is for the SEARCH command to remove the top chain from a chain 

list, derive all possible immediate successor cnains from this chain (this 

is known as expanding the chain), and store those successor chains selected 

by an output filter in the original chain list according to : ts order 

function.  Thus by spec.fying an order function and using the SEARCH 

command, the user can specify in what order chains are to be expanded and 

thus partially control the search strategy.  For example, if the default 

order function (which merely retu-ns 8) is used, the search strategy is a 

depth first strategy.  If the deduction level of a chain is used as order 

function, xne search strategy is a pure b.e^Jth first strategy (level 

saturation).  The SEARCH command can be viewed as an implementation of 
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Nilsson's A>v algorithm [10] for graph searching as applied to theorem 

proving. Each derived chain is a node in the graph and the generation of 

all immediate successors to a chain by extension, factorization, etc., 

represents the expansion of a node in the A>v algorithm. 

Although  the SEARCH command is very effective  in ordering  the 

expansion of chains, the full expansion of a chain at each step often 

results in generating a large number of chains that uiill not be used 

because the value of the order function for these chains exceeds the 

maximum order function value of any chain appearing in some proof.  This 

presents two difficulties: (1) unused high order function valued chains 

fill  up memory too quickly and (2)  their generation requires extra, 

unnecessary work.  The first of these problems could be solved by 

specifying an output filter that rejects chains with order function value 

exceeding a certain amount.  However, this solution generates a bounded 

search strategy, i.e., a parameterized incomplete strategy wh ch may fail 

to find a proof because the order function maximum is set too  low. 

Moreover, the specification of a bounded search strategy fails to solve the 

problem of extra work required in the generation of rejected chains. 

The solution adopted for PSTP includes a means for specificatior of 

ordering of individual inference operations rather than just chains. The 

form of the value of the order function was generalized to include sorted 

lists of operations with numerical values. For example, the order function 

value ((281 REDUCE) (382 EXTEND 6)) could represents the order function 

value for a chain with previously unperformed operations of reduction and 

extension by chain number B. Chains with order function values of this 

form are inserted into chain lists according to the numerical value of the 

first specified operation (7.81 in the example). 
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used by P8TP is accomplished by the use of format functions.  Format 

functions can be used to reformat (ed.t) chains prior to their storage. 

For example, a format function can be used to reorder the last B-l.terals 

of a chain to accomplisn the effect of Kowalski and Kuehner's Mteral 

selection function mechamsn. [SI.  A format function is associated uith 

each chain list.  Each chain is reformatted acco-ding to the order function 

of the chain list into Wh,ch it is bemg stored unless it if already in 

that  format.  A chain may be stored in two different formats  in tW9 

different cham lists (formats are perm.tted to alter the sequence of 

literals which constitutes the chain itself, but not the chain property 

list).  Default format functions are those which convert chains to x- 

standardized or y-standaraized form by renaming variables. 

Zomznsi  gummarii.  Following is a brier description of each of most of 

the PSTP commands.  These PSTP commands can oe oivided into four classes: 

deciarati i  commands  (CHAIMJST. PARAriETERS. POSTPROCEbSING. PROOLETI), 

informative commanos (ANCESTRY. COUNT, DISPLAY), manipulative commands 

(COPY. DELETE. FOR. TRANSFER), and inference commands (EXPAND. SEARCH. 

SEARCH2).  An abbreviated syntax for each command is also presented; 

linguistic vanaoles are enclosed in angle brackets (e.g.. "<sources>") and 

optional command phrases are enclosed in square brackets (e.g.. "[DELETE 1" 

and "[TO <destinations>]").  If any phrase of a command is absent, a 

default value will be used. 

In the descriptions of the commands, the most important linguittic 

variables are <sources> and <destinat ions>. A source or destination 

represents, in general, a chain list and a chain filter. For a chain to be 

used by a command specifying <sources>. it must be a member of one of the 
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D^^E'I"E eamod« The (DELETE <sources>) is the same as the (COUNT 

DELETE <sources>) command, i.e.. the COUNT command with chain deletion 

spec i f i ed. 

P1SPL'AY command. The (DISPLAY [DELETE] <sources>) command prints each 

chain designated by <sources>. If DELETE is specified, each designated 

chain   is  also aeleted   from   its chain   list. 

£XPANi   ioniMnd.       Tne    (EXPAND    [EXTEND]     [FACTOR     [REDUCE]     [PEXTEND] 

[PREOuCE]    [DELETE]   <5ourcesl>   [BY <sources2>]   [GIVING <destinationsl>]    [AND 

<destinations2>])    is   the  principal    inference   command   for   interactive   use. 

It   will   perform   the  designated   inference  operations  on  each  of   the  chains 

designated    by    <sourcesl>   using   each   chain   designated   by    <sources2>    as 

second argument   to  binary   inference operations   (extension and p-extension). 

Derived  chains  will   be  storea   in  <destinationsl> and   lemmas will   be   stored 

in   <ciestinations2>    (chain   filters   permitting).      If   DELETE    is   specified, 

each   designated   chain   in  <sourcesl>   is  also  deleted   from   its   chain   list. 

The   EXPAND   command    is   restricted   to   performing    inference   operations   on 

chains   existing   at   the   time  of   its   invocation,    i.e.,    it   will   not   perform 

any    inference   operations   on   chains    it   has    just   derived.      The   command 

terminates   when   (1)   the  empty  chain   is  generated,    i.e.,   a  proof   has   been 

found,    (2)    all    the   specified   operations   have   been   performed,    or    (3)    the 

user   suspends   processing   of   the   command   by   typing   any   character.       If   no 

inference  operations  are designated,   all   inference operations will   be  used. 

If   at   least   one   inference  operation   is  designatea,   the  word  EXPAND  may  be 

omi tted. 

FOR    command.       The    (FOR    [DELETE]    <sources>    DO   <function>)    command 

applies   the   unary   LISP   function   <function>   to   each   chain   designated   by 
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<sources>.  If DELETE is specified, each designated chain is also derated 

from i ts chain list. 

PARAMETERS command.  The (PARAMETERS [<index>]) command is used to 

declare the values of st.eral global parameters.  If an <index> (an 

arbitrary LISP atom) is specified, it designates for use the predefined set 

of parameter values associated with <index>.  If an <index>  is not 

specified or <index> has no previously defined meaning, the PARAMETERS 

command asks a series of questions requiring the user to define the value 

for each parameter.  Pa-ameters set by the PARAMETERS command include: 

whether newly generated chains sre to be printed, the format in which 

chains are to be printed, whether lemmas are to be generated, and whether 

subbumption is to be performed. 

POSTPROCESSING comniand. The (POSTPROCESSING [<index>]) command is 

used tc declare wt.at postprocessing operation is to be employed. If an 

<lndex> inn arbitrary LISP atom) is specified, this <lndex> designates the 

postprocessing operation that will be used. Allowed <index>s include UEAK- 

SAVE, UEAK-DELETE, STRONG-SAVE, and STRONG-DELETE, designating the 

postprocessing operations described in Section 1. ' f an <index> is not 

specified or <index> has no previously defined meaning, the POSTPROCESSING 

command asks a series of questions requiring the user to designate which 

action among a list of alternative actions is to be taken for a given 

condition. For example, the POSTPROCESSING command may ask whether, in the 

case of an A-literal followed by an identical B-literal, the B-literal 

should be saved, deleted, or deleted with the reduction operation recorded 

in the ancestry of the chain. 

PRPBLEri command.  The (PROBLEM [<declarat ions>]) command sets up a 

31 

^ - MaaBHMMH ■MMi 



problem   for   the   theorem  prover.     It   r.rst  n,ake3   the  chainlist   declarations 

specified  by  declaration   (if   feuer   than   tMO  chain   list   declarations   are 

specified,   up   to   tuo  default   declarations  will   be  made)   and   then  asks   the 

user   to   type   in   the   theorem  and  each  axiom.     The   theorem   ,5   stored   in   the 

first   declared   chain   li.t,    ,ts   negat.on   and   the   axioms   are   sto-d   in   the 

second  declareo chain   list.     The   input   format   for   the   theorer,, and axioms   is 

tne    same   as   uas   used    in   the   description   of    the    linear   MESON   procedure 

except   that  prefix   form   for  predicate and  function  symbols   is required,   and 

(due    to    character    set     l.m.tations)    A   and    v    are    omitted    and    ->     is 

substituted  for  ..     Thus.   Pab . Pba . £=o v Qabx   is  typed   in as Pab Pba  -> 

-ab üabx.     The   theorem and axioms are  then encoded   into   internal   list   form. 

The   PROBLEn   command   pernnts   tne   user   to   save   the   encoded   axiors   so   that 

they  will   not  need   to be retyped   in  future proofs of   the  same problem. 

SEARCH    command.       The    (SEARCH    (EXTEND]     [FACTOR]     [REDUCE]     [PEXTEND] 

[PREDUCE]      <sourcesl>      [ßy     <sources2>]      [GIVING     <destmationsl>]       [AND 

<de5tinations2>])    repeatedly   deletes   the   first   chain    from   <sourcesl>    (a 

cha,n  uith   lowest  order   function value)   and performs  on   it  each designated 

inference   operation   with    the   chains   designated   by   <sources2>   as   second 

argument     to    binary     inference    operations     (extension    and    p-extension). 

Derived  chains  will   be   stored   in  <dest inat ionsl>  and   lemmas uiII   be  stored 

in   <destinat1ons2>    (chsin   filters   permitting).      So   that   neuly   generated 

chains  can  be used  as   input   to   inference operations by  the  SEARCH command. 

<sourcesl>    and    <destinationsl>    «ill    ordinarily    specify    the    same    chain 

lists.     The command   terminates when   (1)   the empty chain   is generated,    i.e.. 

a  proof   has  been   found.    (2)   <sourcesl>   is  empty meaning no  more  operations 

can  be  performed  and  no  proof  could be   found within   the  constraints   of   the 
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specified operations, initial chains, and chain filters, or (3) the uf3r 

suspends processing of the command by typing any character.   If no 

inference operations are designated, all inference operations ui11 be used. 

SEARCH2 command.  The (SEARCH2 [EXTEND] [FACTOR] [REDUCE] [PEXTENÜ] 

[PREDUCE]  <sourcesl>  [BY  <soürces2>]  [GIVING  <d8stinationsl>]  [AND 

<destmations2>J) repeatedly deletes the first chain from <sourcesl> (a 

chain with lowest order function value) and performs on it the first 

designated inference operation in the order function value.  This inference 

operation is then deleted from the order function value and,  if any 

inference operations remain in the order function valus, the chain is 

reinserted in <sourcesl> (now with the numerical value associated with the 

next inference operation as the numerical value of the chain for insertion 

into  the  sorted chain  list).  Derived chains will  be  stored  in 

<destinationsl> and lemmas will be stored in <de3t inations2> (chain filters 

permitting).  So that newly generated chains can be used as input to 

inference operations by the SEARCH2 command, <sourcesl> and <destinationsl> 

will ordinarily specify the same chain lists.  The order function, using 

variables of the SEARCh2 function, will construct a list of inference 

operations with (in the case of binary inference operations)  second 

arguments as specified in <sources2> for derived chains as they are stored. 

The command terminates when (1) the empty chain is generated, i.e., a proof 

has been found, (2) <sourcesl> is empty meaning no more operations can be 

performed and no proof could be found within the constraints of the 

specified operations, initial chains, and chain filters, or (3) the user 

suspends processing of the command by typing any character.  If no 

inference operations are designated, all inference operations will be used. 
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TRANSFER command. The (TRANSFER <sources> [TO <destinations>]) 

command is the same as the (COPY OELETE <sources> [TO <dest "mat ions>] ) 

command,    i.e.,   the COPY command uith chain deletion  specified. 

34 

        -  -—-■-      ■ ■■-'-' 



3. Performance Study 

In order to give sofle idea of the performance of PSTP with some simple 

search strategies and to make some points about relative merits of some of 

these strategies, the resulte of PSTP runs en 9 examples using 4 strategies 

are presented here. Results are compared to results for two other theorem 

proving programs tested on the same examples. 

Ihs examples. The examples are taken from a comparative study of 

theorem proving strategies used by QA3.B by Reboh et al [11] (additional 

information on sources, theory, and previous uses of these examples are in 

UlDl the same examples were also run for an SL-resolut io,-. theorem proven 

(here called SLRTP) by Aubin [1,2]. The examples are axiomatized just as 

for QA3.G with an occasional suostitution of a disjunction for an 

implication and, in the cases of unsat isf iable sets of axioms, the use of 

the negation of one of the axioms as the theorem. 

Inference operations used. All the examples were run with extension 

as the only rule of inference except the NUfll example for which reduction 

was also necessary. The UEAK-DELETE postprocessing operation was used for 

all the examples. Its use, of course, permits ground factorization and 

reduction. In some examples (BURSTALL, SHORTBURST, GR0UP1, GR0UP2), it is 

recidily apparent from the structure of the problem that no reduction is 

possible (since every chain derived from the theorem has only positive 

literals eliminating any possibility of matching an A-literal with a 

complementary B-literal). The ANCES1 example is propositional and thus the 

ground reduction in the UEAK-TELETE postprocessing operation is sufficient. 

In the remaining three problems (HAS-PARTS1, HAS-PARTS2, PRIM) for which 
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reduction was not employed (although ground reduction was used in each), 

the use of the reduction operation resulted in the generation of no 

additional   chains.    Lemmas were not generated for any of  the examples. 

S^ch strategies used. The strategies ubed are characterized by 4 

parameters: length multiplier, level multiplier, length maximum, and level 

maximum. The length of a chain is defined to be its number of B-literals. 

This is consistent with the notion of the length of a clause in resolution 

theorem proving being its number of literals since in a chain A-lit'vals 

record ancestry information and would not be present in the corresponding 

clause form. The level of a chain is defined to be the number of inference 

operatic,a employed in deriving it from the alleged theorem excluding those 

operations (ground factorization and reduction) automatically performed by 

tne postprocessing operation. 

The SEARCH2 search command was employed with projected inference 

operations ordered according to the minimum values of a weighted sum of the 

expected length and level of the result. The expected length of a chain 

derived by extension is the length of its parent chain being extended plus 

the length of the axiom minus 2. The expected length of a chain derived by 

factorization or reduction is the length of its parent chain minus 1. The 

actual length may be less (but never MTSI due to removal of B-literals by 

the accepting transformation. The expected and actual level of a chain is 

the level of its parent plus 1. Gnly inference operations whose results 

have expected lengths and levels not exceeding the length or level maxima 

will be attempted (this way of implementing length and level maxima was 

also used by QA3.ß and SLRTP). 

Two  sets  of   length and   level  multipliers were  tried.     The  first  has  a 
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length   multiplier   of   181   and  a   level   multiplier   of   188  and   is   called   the 

181/188    strategy.       In    the    181/183    strategy,     the    projected     inference 

operation  uith  highest  merit   is one with  the   smallest  value of   (188   times) 

the   sum  of   expected   length and   level   of   the  result.     Ties  are   resolved   in 

favor   of   lesser   expected   length   (a  188/181   strategy  would  resolve   ties   in 

favor   of    lesser   expected   level).      (It    is   assumed   here   that   the   expected 

length of  a chain will   never exceed 188.)     The most   important   thing   to  note 

about   the   181/188  strategy   is   that   it   is  essentially  the   same  as  Kowalski 

and   Kuehner's   upper   diagonal   search   strategy    [5].      It    is   an   admissable 

ftrategy   [181   except   for  cases  whare   the   postprocessing   operation   removes 

B-literals   by   ground   factorization  or   reduction.     First   proofs   dscov^ret 

by  admissaole   strategies are guaranteed  to be  minimum   level   proofs. 

The    second    strategy   has   a    length    multiplier    of   581    and    a    level 

multiplier   of    188   and   is   called   the   581/188   strategy.      In   the   581/1^0 

strategy,   the  projected   inference operation  with highest  merit   is  one  uith 

the  smallest  value of   (183 times)   the sum of   the expe-.ed  level   and 5  times 

the   expected    length   of   the   result.     Ties   are   again  resolved   in   favor   of 

lesser  expected   length.     By multiplying   length by 5  times as much as   level, 

a   strong   length  preference  strategy   is  produced.     The 581/188  strategy   is, 

of   course,    inadmissable   since   it   is   clearly   not   always   the   case   that    it 

requires  at    least   5   inference operations   to  remove  a  single   literal.      (For 

a  strategy  to be  admissable,   the estimated additional  cost  to solution must 

always  be   less   than or equal   to  the actual   additional   cost  to  solution.) 

The 181/188 and 581/183 strategies were each tried with (bounded) and 

without (unbounded) length and level maxima. The length and level maxima 

used were  those used by QA3.B nherever oossible. 
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Statist'cs-        The     Performance     of     strategies     will     be     primarily 

characterized  by   the   "chains  generated"   statistic.     Here,   this   information 

is   represented   by   a   4-tuple:   the   first   component   is   the  number   of   chains 

retained:      the     second    component     is     the    number     of     acceptable     chains 

generated;   the  third component   is  the total  number of  chains generated;   the 

fourth   component    is    the   number   of   attempted    inference   operations.      The 

number   of   retained   chains    is   the   number   of   acceptable   chains   minus    the 

number   of   chains  eliminatec;  by  subsumpt i on,   function  depth   tests,   etc.     No 

such   processes   i'ere   used   to   eliminate   chains   in   this   experiment,    so   the 

number    of    retained   chains    is   always   equal    to    the   number   of   acceptable 

chains.      The   total   number   of   chains  generated   is   the  number   of   acceptable 

chains     plus     the    number     of    non-acceptable    chains     generated.        These 

statistics    and    the    time    figures   referred    to    below    are    automatically 

accumulated by PSTP and printed out when a proof   is  found. 

Nearly  comparable   statistics are presented  where  available   for   QA3.B 

and SLRTP   (except QA3.G  statistics refer   to clauses rather  than chains). 

Best and mean performance figures are presented for QA3.B on each 

example. For QA3.B, the number of retained clauses is the number of 

retained clauses after subsumption and function depth tests; the number of 

acceptable clauses is computed as the number of successful resolutions and 

factorings; the number of attempted inference operations is computed as the 

number of attempted resolutions and factorings. The proportion of tested 

QA3.B strategies Hhkh discovered a proof is given on the same line as the 

mean performance of QA3.6 strategies; unsuccessful strategies were excluded 

in computing  the means. 

Performance   figures  are  presented   for  SLRTP  where   the  set   of   support 
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for the refutation was the negation of the theorem in the PSTP proof on 

each example. Due to the similarity of operations and terminology between 

the linear MESON procedure and the inference system for SLRTP, SL- 

resolution   [51,   we will   here present a brief description of SL-resolut i on. 

SL-resolut ion,   a  refutation  procedure,   can  be  viewed  as  a   variant   of 

model    elimination   without   equality  with   the   following   features.      (1)    The 

capability  for reordering B-literals at  the end of  a chain  is  formalized   in 

the  form of a   literal   selection function which designates  the   literal   to be 

extended   on    in   succeeding   extension   operations.      (2)   Factorization    is   a 

required   operation   for   completeness   in  SL-resolution   since   the   equivalent 

of     the    STRONG-SAVE    postprocessing    operation     is    employed.       The    model 

elimination   factorization   and   reduction   operations   are   combined   into   the 

SL-resolution   reduction    operation.       (3)    SL-resolution   requires    a    fully 

factored   input   set   of   clauses,    i.e.,   every   non-tautologous   factor   of   an 

input   axiom   must   also   be   input   (or,   as   in SLRTP,   derived).     A   benefit   of 

this    is   that   SL-resolution   reduction   operations   need   never   be   performed 

with  the   leftmost   involved  literal  being or  following  the   last A-literal   of 

the  chain.      (4)   Any B-literal   following  the   last  A-literal   of   the  chain   is 

a  candidate   for  removal   by   the  reduction operation,   not   just   the  rightmost 

as    in   model    elimination.       (5)   Upper   diagonal    search    is   the   prescribed 

search  strategy   for  SL-resolution. 

For SLRTP, the number of retained chains is the number of retained 

chains after function depth tjsts and subsumption (subsumption is only used 

in eliminating redundant axiom chains or their factors during the process 

of generating a fully factored input set of axioms); the number of 

acceptable   chains    is   computed   as   the   number   of   successful    extensions, 
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reductions, and factorings (used only for generating a fully factored input 

set of axioms); the number of attempted inference operations is computed as 

the number of attempted extensions, reductions, and factorings. The GROJPl 

and GR0UP2 example statistics are taken from KI. 

LLüie. statistics.  The "search time" statistic represents the time 

spent in searching for a proof by a compiled version of PSTP; it excluoes 

time spent in inputting the problem, outputting of final statistics and 

proof, and garbage collection, although it does inc'ude time renuired for 

some trace output during the search.  Search time is the only widely 

variable component of  total  time to solution with problem  inpu+ and 

statistics and proof output time relatively constant and small.  Although, 

PSTP is conservative of storage (performing LISP CONS operations only when 

necessary when instantiating chains) and tnerefore ordinarily requires few 

garbage collections, garbage col.ection time is excluded because (1) time 

consuming garbage JOIlections occurring at random times in the search for a 

proof tend to rcndomize the time statistics especially for short searches 

(this problem could be overcome by always starting a search for a proof 

immediately after a garbage collection) and (2)  frequency of garbage 

collection is dependent on the amount of storage available (with infinite 

storage, there need not be any garbage collections). Nearly all the proofs 

presented here were found with about 25000 words available for storing 

chains and most were found with no garbage collections. 

Time statistics should not be used for comparison among strategies 

used by different theorem provers without considerable caution and more 

information than is usually available. Such statistics are of course 

influenced by the machine and operating system used, language and coding of 
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the theorem prover, whether compiled (SLRTP. PSTP) or interpreted (QA3.G), 

special conditions applying to the operation of the theorem prover (e.g., 

tracing), and some randomness in the times themselves (such randomness, 

attributable to variable load on the time sharing system, is visible in 

some anomalies in the statistics presented nere). 

BfiAUill< Four primary observations can be made from the results of 

the experiment presented here: (1) PSTP pertorms competitively uith QA3.B 

ana SLRTP, (2) the 501/133 strategy performs better than the 181/100 

strategy (for tnese examples), (3) the 501/102 strategy is relatively 

insensitive to length and level bounds, tne 101/100 strategy is much more 

senHitive, and (4) elimination of some implicative forms of the axioms can 

result in improved performance. 

The basis tor comparison of tne results of PSTP and QA3.6 is the 

number of acceptable chain« generated (equals the number of chains 

retained) for PSTP versus tne number of acceptable clauses generated 

(equals the number of successful reso:utions and factorings) for QA3.G. 

This is a fairer comparison than one using the number of retained clauses 

for GA3.B since ÜA3.D eliminated clauses by function depth maxima and 

subiumpt ion. Even this comparison is still somewhat unfair to PSTP sinct 

if function oepth tests and suosunption had not been used In QA3.G, the 

number ot generated clauses would presumably have been larger since 

elimirated clauses couiu now act as parent clauses ,n additional 

i nferences. 

Using this basis for comparison, the unbounded 501/100 strategy (the 

strategy we prefer for reasons given below) performed better than the 

average of QA3.e strategies which found a proof in all the examples except 

PRIfl, GR0UP1. and GR0UP2. 

MaHMMMl 



In the PRin example, the unbounded 581/188 strategy performed only 

s.icjhtly worse than the average of QA3.6 strategies. 

In the GR0UP1 example, the absolute difference in performance is small 

even if the number of chains generated by PSTP is double the number of 

douses generated by QA3.B. In view of the fact, for example, that by 

reversing the order of presentation of the axioms to PSTP can cause the 

performance of PSTP to exceed that of QA3.G. ue tend to regard this 

difference as Peing relatively insignificant. 

The difference in the case of GR0UP2 is much more serious and has a 

rather different explanation.  Where the formulation of the GR0JP2 example 

has several unit axioms and two 4-literal associative ax.oms. .he use of a 

length maximum value of 3 can be seen to be extremely restrictive.  In 

resolution terms, this length maximum requires that only units be resolved 

against the associative axioms, and in the case of GR0UP2 if the negation 

of  the  theorem  is used as the set of support,  the  length maximum 

automatically restricts any tested strategy to a further refinement of unit 

resolution in wMch only the negation of the theorem can be directly 

resolved against the associative axioms. PSTP was tested with a variant of 

the GR0UP2 example in which axiom 3 was reordered so that a proof meeting 

the length maximum value of 3 restriction existed.  On this example, the 

unbounded 181/188 strategy generated 435 chains; all the other strategies 

generated 29.  Ue therefore feel that the better performance of QA3.B on 

this problem w^s more attributable to the restrictive length maximum than 

to an intrinsic inferiority of PSTP. 

The comments about the restrictive length bound used by QA3.B in the 

GR0UP2 example can be extended to several other examples.  The BURSTALL, 
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SHORTBURST, HAS-PARTS1. HAS-PARTS2, PRIH, ANCES1, GROUP1, and GR0UP2 

examples all had very restrictive length maxima, in every case set at or 

below the minimum value required for PSTP to discover a proof. Level 

maxima were often similarly restrictive although we perceive this to be 

much less important in reducing the size of the search in the non-depth 

first search strategies tested. LJe feel that use of such restrictive 

length and level (especially length) bounds Invalidates tne results of [11J 

to c degree, since their use imposes severe limitations on the structure o* 

the search space. In this restricted search space, tests of different 

strategies may fail to discriminate between strategies, or unfairly 

discriminate between them. 

Given the similarity of SL-resolut Ion and the linear HESGN procedure, 

one would anticipate substantial similarity in the results for PSTP using 

the bounded 101/100 strategy (upper diagonal search) and SLRTP. For 6 of 

the examples (BURSTALL, SHORTBURST, HAS-PARTS1, PRIfl. ANCES1, and NUMl), 

the results agree closely. Differences emerge for the remaining 3 

examples. Ue don't know uhy PSTP did so much worse than SLRTP on the HAS- 

PARTS2 example. In the GRGUPl example, use of a fully factored input set 

of clauses was clearly beneficial to SLRTP since the very sKort proof could 

be shortened further by using a factored form of one of the associative 

axioms. PSTP with factorization could not match the SLRTP results, since 

extension by the associative axiom followed by factorization counted as 2 

inference operations in comnuting the level of the resulting chain (whose 

value is used to compute the: order function value) whereas extension by tne 

factored associative axiom by SLRTP counts as only 1 inference operation. 

(PSTP could be made to equal SLRTP's performance on this example by 
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inputting a fully factored set of axioms, a perfectly legal operation. 

although unnecessary for completeness.)  In the case of the GR0UP2 example, 

for „hlch SLRTP failed to find a solution, both the bounded and unboundea 

101/100 strategies in PSTP shoued relative difficulty in discovering a 

solution.  In SLRTP. this difficulty uas exacerbated by the very feature 

uhich  aided  the  quick  solution  of  the GR0UP1  examole:  mandatory 

factorization.   PSTP  uith  factor ,zat;on  and  the  STRONG-DELETE 

postprocessing operation (resultmg in an inference system very similar to 

SL-resoiuticn) failea to find a proof mth the unbounded 101/100 strategy 

after 1507 chains were generated, discovered a proof Whi le generating 410 

chains with the unbounded 501/100 strategy, and discovered a proof uhile 

generating 458 chains uith each of the bounded strategies.  The proofs 

discovered were the same as those discovered without factorization. 

We believe the detrimental effects of factorization as demonstrated in 

the GR0UP2 example results are more typical than the beneficial effects 

illustrated in the GR0UP1 example.  In our experience, even in cases where 

factorization does shorten a proof (as it did not in the GRÜUP2 example), 

the proi iteration of highly instantiated chains caused by the use of 

factorization still often outweighs the benefits.  (These negative comments 

clearly refer only to general factorization where literals must be unified; 

factorization in the ground case is clearly beneficial and is included in 

the postprocessing operations we used here.)  Should future experience 

prove this judgment about factorization wrong, the linear MESON procedure 

still permits factorization as a legal though optional operation. 

Another point can be made here concerning SLRTP's efforts to discover 

a solution to the GR0UP2 example.  SLRTP uses a literal selection function 
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to   designate  which   literal   of   each  derived  chain   is   to   be   used   in   future 

extension  operations.     The  only   literal   selection   function   tested   was   the 

function   which   always   selects   a   literal    which   has   the   fewest   matching 

literals among  the axioms.     This has the obviously desirable characteristic 

of    reducing    the   branching   rate   of    the   search    tree   since    the    selected 

literal   has   the   fewest   matches  among   the  axioms   and.   further,   removal   of 

the     selected     literal     after     some     in.erence     operations     will     usually 

instantiate   the remaining   literals and reduce   the number  of   literals  among 

the   axioms:  matching   them.     However,   this   literal   selection   function   is,   in 

the    case    of    problems    with    structura    similar     to    the    GROl P2    example. 

inconsistent   with   the   use   of   length  maxima.     in  GR0UP2.   for   example,    the 

literal   selection   function  will   show  a  preference   for   literals   capable  of 

being   extended   upon   only   by   the   associative   axioms    (since   any   positive 

literal    matches    the   consequent   of    the   associative   axioms,    any    literal 

matching   a   unit   ax^om   also   matches   the   associative   axioms).      Thus,    the 

effect   of   the  use   of   this   literal   selection   function   is   to   increase   the 

length   of   chains  appearing   in  a  deduction possibly  requiring   the   increase 

of   the   length maximum used. 

One final point remains about the comparison of results between PSTP 

and SLRTP. This concerns the very small number of attempted inference 

operations by SLRTP. This is due to the use of a literal classificatun 

tree which automatically selects out likely matches for literals to bu 

extended upon from among the literals in the axioms. The extension 

operation is only attempted for axioms containing literals selected by the 

literal classification tree. This probably represents a fairly small 

(though real)   saving   in  computational  effort  since one must count   the cost 
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of creating and accessing the literal classification tree and the cost 

saved is that of attempting unifications destined to fail, usually a fairly 

QUICK operation. The real Penef,t of use of the literal c .ass i f i cat I on 

tree is the eli.inat.on of the multiple attempts at unifying literals that 

Mould  ord.nar.,, .esult  from use 0f  the  .^  se|ection  ^^ 

requ.ring discovery of the number of matches for a literal among literals 

in the axioms. 

In comparing the four strategies tested by PSTP among themselves, one 

first drovers that the 581/103 strategy invariably performed as .ell as 

or better than the 101/100 strategy for the sanie choice of |ength ^ |tvt| 

-naxima. Th,s is especally true of ^ results for the BURSTALL. GR0UP2. 

and PRin examples in the absence of length and level maxima. A further 

ciemonstrat^on of the supers,ty of the 501/100 strategy is it. relative 

in.en,itlvlty to .engtn and level bounds. Only in the BURSTALL example did 

the  bounded 501/100 strategy perform significantly better  ^  ^ 

unbounded strategy. Also, in the PRIH and GR0UP2 examples, the addition of 

length and level bounds actually degraded the performance of the 501/100 

strategy since the bounds excluded proofs discovered by the unbounded 

strategy.  In contra9t. rjerformance of ^   m/m   ^^   ^ ^^ 

improved by the addition of length and level bounds, but (as stated above) 

never  improving upon the performance of ^ ^^    ^^ ^ 

denonstrated insensi t. vi ty of the 501/100 strategy to the addition of 

length and level bounds seems especially significant in vieu of the often 

extreme restrictiveness of the bounds tested. 

Due to its general I j good performance and lack of improvement uith the 

addition of bounds. We regard the unbounded 501/100 strategy as the best 

among those tested. 
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Ue feel generally that, provided it performs adequately, i complete 

(e.g., length preference) strategy like the unbounded 501/188 strategy is 

to be preferred to an incomplete (e.g., length bounded) strategy like the 

bounded 181/188 strategy, e- jn if the latter, with appropriate choice of 

bounds, can often match the performance of the former. 

Finally, we merely note that judicious elimination of various 

implicative forms of the axioms can result in significantly improvec 

performance as demonstrated in the results for the HAS-PARTS1, HAS-PARTS2, 

and PRIM examples. Of course, this elimination of implicative forms of the 

axioms destroys the completeness property of the linear MESON procedure. 

However, this controlled incompleteness may be desirable in cases where 

significant improvement in performance results. Completeness could be 

preserved and nearly the same effect gained by presenting PSTP with ail the 

implicative forms of the axioms, but (via the order funct;on definition) 

giving PSTP a strong preference for using one instead of another. 

One feature of the linear HESON procedure not previously discussed is 

the length of its proofs. It is characteristic of linear theorem proving 

strategies that they require longer proofs than some other strategies. 

This and past studies [1,43 indicate that linear strategies can overcome 

this increased proof length and perform compet tively with other 

procedures. The linear resolution strategy tested in QA3.G was Isss 

successful since the special chain rejection criteria of variants of the 

model elimination procedure were not used. 

Uhile the length of a proof is one measure of its complexity, we feel 

that the increased length of linear MESON procedure proofs is not a great 

disadvantage  in  terms of readability.  The problem-reduction method 
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oriented form of such proofs often makes them more comprehensible than 

ordinary resolution proofs relying on converging lines of deduction 

rteulting in a refutation. 
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4.   Summary 

1       •• "•   have  Presented   the   linear  HESON  procedure,   a  procedure  we   feel   to 

be   one   of   the  most  natural   available  systems  of  complete   inference   in   the 

I first  order  predicate calculus due  to   its   linear  format  and relationship   to 

| goal-subgoal   trees.     It  also has advantages  in the capability  for   inputting 

I multiple    implicative    variants   of    indiv.dual    axioms    so      hat     individual 

variants can be differentially treated (or ignored). Another advantage of 

the linear HESON procedure as compared with, for example. SL-resolution is 

the optional nature of the factorization operation. Althouah the point Is 

not elaborated upon here, it is our observation (also made by Fleisig et al 

[41) that factorization (except ground factorization) is usually harmful 

and results   in   instantiating chains  too greatly. 

The Programmable Strategy Theorem Prover (PSTP) is a theorem proving 

program using the linear HESON procedure as its inference system. 

Especially significant features of PSTP are the general capabilities for 

specifying information to be computed or retained about chains, for 

specifying uhich chains are to be retained or manipulated by a given 

command, and for epecifging the order in uhich inference operations are to 

be performed   in  fully automatic  searches  for a proof. 

We have presented th« results for PSTP solutions of 9 examp ,s 

previously tested in two other theorem proving studies. From these results 

ue concluded that PSTP performed competitively as compared with the othe- 

tested theorem provers. Ue feel that the potential significance of PSTP is 

not that it perform spectacularly using simple search strategies such as 

those   tested   (it   doesn't),   but   that   it   provides   an   inference   system   and 
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system  features which facilitate the user specification of more complex and 

effective  search strategies and chain elimination criteria. 

Ue also demonstrated empirically the inferiority of the diagonal 

search strategy to similar strategies which have a stronger length 

preference component and thai such length preference oriented strategies 

all but eliminate the need for length maxima for problems of this level of 

complexity. Ue prefer search strategies that have, for example, length 

preference built in to the added imposition of length bounds: the use of 

preference strategies in the absence of bounds results in complete 

strategies guaranteed to find a solution if one exists. 

Ue have also criticized MM of the methodology used in previous 

theorem proving studies. Results in such studies are often heavily 

dependent on the length and level (especially length) bounds used in 

restricting the search for a solution. In consequence, success in finding 

a solution in reasonable time and space is often more attributable to the 

bounds used than the tested stra egy. Thus, such results fail to 

adequately discriminate between different Mneorem proving procedures. Ue 

urge future  studies   test  theorem proving procedures   in  the  absence  of 

artificially  imposed bounds. 
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ExampUs 

i.   BURSTRLL Example 

fix i oflis: 

1. habCpl.asslj.ne)) 
2. follows(p2,pl) 
3. has(p2,ass(ic,nl)) 

&. Iabels(loop,p3) 

5. <ollous(p3,p2) 

6. has(p3,i(then(equal(j,n),pA)) 

7. hdiipi.qoto lüut)) 

8. follous(p&,p4) 

9. <ollous(p6,p3) 

16. ha (p6,ass(k,times(n2,k))) 

11. <ol lous(p7,p6) 

12. has(p7,ass(j,plus(j,nl))) 

13. fol lous(p8,p7) 

14. has(pa,golo(loop)) 

15. foI lows (xp.yp)  < succeeds(xp(yp) 
16. succeeds(xp,zp)  A succeeds (zp.yp)  * succeeds(xp.yp) 
17. has(xp,(joto(zp>)  A  labelsCzp.yp)  < succeeds(yp,xp) 
18. has(xp, i «n,en(ze,yp))   ■» succeeds (yp.xp) 

Theorem; 

19. sjcceeds(p3,p3) 

2. SHORTBURST Example 

Ox ions: 

1. läbels(loop,p3) 
2. has(p3,if then (equal(j,n),p4)) 
3. has(p4,goto(out)) 
4. follous(p5,p4) 
5. follows(p&,p3) 
6. ha<> (p8,goto (loop)) 
7. follows(xp.yp)   t succeeds(xpjyp) 
8. succeeds (xp.zp)   A succeeds (zp.yp)   * succeeds(xp,yp) 
9. hasCxp.golotzp))  A   labelsCzp.yp)  < succeeds(yp.xp) 

18. has(xp, I f then(ze,3p))  -• succeeds (yp.xp) 

Theorem: 

11.   succeeds(p3,p3) 

3. HfiS-PRRTS Example 1 

fixloms: 

1. in(John,bog) 
2. m(x,boy)   <  iiCx.human) 
3. hp(x(xm,y)   ^   in(skl(x,y,z,xm,xn),y)   v hp(x, t (x«,x.n) ,z) 
4. hp(K,xm,y)   * -hp(sk:l(x,y>z,xm,xn> ,xn,z)  v hp(x, t (xm,Kn),z) 
5. in(x,hand)   ^ hp(x,n5, f mgers) 
6. in(x,human)  -• hp(x,n2larin) 
7. in(x,arm)   t hpU.nl, hand) 

Theorem; 

8. hp(John,t(n2,nl),hand) 
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I.   HHS-PPRTS  Example  2 

fixioms: 

1. m(John.boy) 
2. in(x,boy)   «   in(x,human) 
3. hp(x,xnvj)   «   in (sk 1 (x, y, z, xm, xn) ,1^)   v  hp (x , t (xm, xn), z) 
4. hp(K,xm,y)   -t  -hp (sk l(x,y , z , xm, xn) ,xn, z)   v hp (x, t (xm, xn), z) 
5. in(x,hand)   4  hp (x,nb,finqers) 
6. in(x,numaii)   «  hp(x,n2,arm) 
7. m(x,arm)   ■» hp (x ,nl, hand) 

Thtortm: 

6.   hp (John,t(t(n2,nl),n5),<ingars) 

5. PRin  Example 

PxiomE: 

1. Dxx 
2. Oxy  A  Dyz  4 Oxz 
3. Px   v  DyCOx 
4. Px  v LnlgU) 
5. Px  v Lg(x)x 
6. Lnlx A Lxa « Pf (x) 
7. Lnix A Lxa « DIU)M 

8. Lnla 

Theor«»: 

(9.   -Px   v  -Oxa       negat.on of   theorem) 
Id.   Pxl  A Oxla 

6. fiNCESl Example 

Ax IOMS: 

1. -J v fi v H 
2. K  v H v J 
3. -K  v H v J 
4. -0 v -B 
5. -fi  v B 
6. -H  v -C 

Theoram: 

7. H A -C 

7. NUni  Example 

Px iomt: 

1. Px A riyzu A Oxu ■* Dxy v Dxz 
2. MxxsCx) 
3. Hxyz « flyxz 
4. Mxyz  « Dxz 
5. nat(c>((b) 
6. Pa 

Thaoramt 

7. Dab 
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3. Pg(xy)xy 

4. PKh(xy)y 

5. PxylUy) 

Examples 

8. GR0UP1 Exampla 

flxions: 

i.   Pxyu A Pyzv A Pxvu -> Puzw 

2. Pxyu A Pyzv A PUXH -• PXVM 

Theor«m: 

(G. -PJ(X)XJ(X)  negation of theorem) 
7. Pj(xl)xlj(xl) 

9. CR0UP2 Example 

Oxloms: 

1. Pxex 

2. Pexx 

3. Pxyu A Pyzv A PUZM ■• Pxvw 
4. Pxyu A Pyzv A PXVH -• Puzu 

5. Pxxa 

6. Pabc 

Theorem: 

7. Pbac 
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Length 

Hu 11 i- 

Al 'T 

Statiitlct 

Laval 
Hulli- 

-iilier 

Length      Laval 
HaxiMuM naxiMuM 

Proof 
Coda 

Chains 
Generated 

kaUamüMUäin 

Search 
Tina 

(SOG} 

1. BURSTflLL Example 

lei 108 
581 188 
iai 188     2 
581 188    2 

Qfi3.6 best      2 
Q03.6 mean 16/19 2 

SLRTP 3 

2. SHORTBURST Example 

12 
12 

12 
12 

13 

181 188 
501 188 
181 188 
581 180 

Qfi3.b best 

2 
2 

Qfi3.6 mean 14/14 2 

SLRTP 3 

HfiS-PORTS Example 1 

Implicative form «or 
181    100 
581    100 
181    100    3 
501    100    3 

Disjunctive form for 
181    100 
501    100 
181    100    3 
581    100    3 

083.6 best     2 
003.6 mean 6/6  2 

SLRTP 2 

HflS-PORTS Example 2 

Implicativa form for 
181    100 
501    180 
181    188    3 
581    188     3 

Disjunctive fori« for 
181    100 
501    100 
181    100    3 
581    100    3 

Qn3.b best 
033.6 Man 6/7 

SLRTP 

2 
2 

18 
10 

10 
10 

18 

axioms: 

18 
10 

•xicms; 

18 
10 

10 
10 

18 

ax ions: 

10 
18 

axioms: 

10 
18 

18 
18 

R 
ft 

R 
R 
R 
R 

R 
R 
R 
R 

R 
R 
R 
R 

R 
B 
R 
8 

13 

191/191/215/3129 46.3 
74/ 74/ 75/1229 16.1 
45/ 45/ 45/741 9.8 
45/ 45/ 45/741 9.2 

38/ 42/  /1462 
99/118/  /3222 

48/ 48/  /122 

18/ 18/ 19/144 3.8 
16/ 16/ 16/128 2.1 
16/ 16/ 16/128 2.2 
16/ 16/ 16/128 2.1 

12/ 12/  /255 
20/ 21/  /325 

16/ 16/  / 42 

7/ 7/ 7/  47 0.7 
7/ // 7/ 47 0.7 
7/ 7/ 7/ 47 1.1 
7/ 7/ 7/ 47 0.8 

12/ 12/ 12/124 1.8 
12/ 12/ 12/124 1.7 
12/ 12/ 12/124 1.5 
12/ 12/ 12/124 1.5 

8/ 18/  /112 
28/ 24/  /343 

12/ 12/  / 29 

11/ 11/ 11/ 83 1.3 
11/ 11/ 11/ 83 1.3 
11/ 11/ 11/ 83 1.3 
11/ 11/ 11/ 83 1.9 

50/ 50/ 50/478 8.1 
38/ 38/ 36/430 5.7 
36/ 38/ 38/430 5.7 
36/ 36/ 36/430 6.« 

12/ 14/  /2e5 
44/ 51/  /936 

20/ 20/  / 41 
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Statistics 

Length    Level 
Multi-    flulti- 

-Bl'flr     eher 

Length      Level 
Maximum Ha«imum 

Proof 
Code 

Chains 
Generated 

iMt/acc/tot/atf) 

Search 

dec) 

PR in Example 

Implicative form »or axiomsi 
181    106 

581    180 

181    188    3 

581    180    3 
18 

18 
Disjunct ivb form for axioms: 
18' 

581 

181 

581 

181 

581 

188 

188 

188 

180 

188 

188 

0(13.6 best 

QP3.6 mean 9/18 

SLRTP 

6. flNCESl Example 

10 

10 

18 

18 

10 

10 

11 

812/812/ie5:/8872 288.7 
57/ 57/ 64/648 11.6 

78/ 78/ 82/816 12.3 

54/ 54/ 68/689 8.2 

165/165/187/l''i3 28.5 

181/181/113/1228 18.8 

138/130/146/1532 28.2 

138/138/146/1532 18.8 

138/138/146/1532 21.7 

181/181/113/1228 16.8 

13/ 19/ 

36/ 97/ 
/288 

/999 

122/134/  /243 

101 

581 

181 

581 

1J0 

180 

100 

180 

Qfi3.S best     2 

Cifi3.6 mean 19/20 2 

SLRTP 

7. Nuni Example 

10 

10 

10 

10 

10 

23/ 23/ 23/248 

13/ 13/ 13/108 
13/ 13/ 13/106 

13/ 13/ 13/108 

5/ 12/  /158 

6/ 13/  /129 

14/ 14/  / ^fi 

3.2 

1.3 

1.6 

1.4 

101 

501 

101 

581 

100 

100 

100 

100 

003.6 best     5 

003.6 mean U/11 5 

II 

10 

10 

10 

10/ 10/ 11/ 47 
10/ 10/ 11/ 47 
10/ 10/ 11/ 47 
18/ 10/ 11/ 47 

8/ 18/ / 68 

9/ 11/ / 83 

1.2 

1.1 

0.9 

8.9 

SLRTP 5 10 9/    9/ / 21 

'..R0UP1 Example 

iei       loo 
581          100 
101          100 
fU          100 

3 
3 

10 
10 

1 
1 
fl 
1 

14/   14/ 
14/  14/ 
1*/ 14/ 
14/ 14/ 

14/ 54 
14/ 54 
14/ 54 
14/ 54 

2.8 
1.5 
1.5 
1.4 

003.6 best 
Q03.6 mean 9/9 

3 
3 

10 
10 

7/    7/ 
7/    7/ 

/ 33 
/ 34 

SLRTP 3 10 9/ 12/ / 35 
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SUtlCtlCC 

Lsngth Laval Length Laval Proof Chains Saarch 
Hu11i- Hu1ti- flax tmum naximun Coda Canaratad TIM 
ol i«r pi i«r 

(amp la 

Int/ACG/tSt/AU) (sac) 

CR0UP2 E> 

181 188 _ _ P 576/570/752/2488 97.2 
sei 188 - - B 119/119/149/508 17.8 
181 188 4 18 1 225/225/325/938 28.8 
581 188 4 18 1 225/225/325/938 36.7 

003.6 bast 3 10 54/ 7«/      /324 
003.6 maan 8/8      3 10 68/ B',       /517 

SLRTP 1 1 no proof  found 
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Proofs 

. BüRSTOLL Example 

Proo' A 

19. s icc«eds(p3,p3) 
20. [succeeds(p3)p3)] 
21. (cucc49ds(p3,p3)] 
22. [succ«Bds(p3,p3)) 
23. [succeeds(p3(p3)] 
24. I-.-'-9eds(p3,p3)] 

<olIOHS(X1,P6) 
2S. [succeeds(p3,p3)) 
26. Isucceeds(p3,p3)) 

succeeds(xl,p7) 
27. (succeeds (p3lp3)l 

[succeeds'xl.p?)) 
28. (succeeds(p3,p3)] 
29. (succeeds(p3,p3)) 

has(p8,goto(xl)) 1 
30. (succeeds (p3,p3)] 

has(p8,(|oto(.oop)) 
31. empty 

succeeds(p3,xl) succeeds(xl,p3) 

succeeds(p3,xl) (succeeds(xl,p3)] «ollowstxl.pS) 
succeeds (p3,p6) 

(succeeds(p3Ip6)) succeeds(p3,xl) succeeds(xl,p6) 
(succeedsCpS.pS)] succeeds(p3,xl) (succeeds(xl.p6>] 

(succeeds(p3pp6)) succeeds(p3,p7) 
(succeeds(p3,p6)) [succeed (p3,p7)J succeeds(p3,xl) 

[succeeds(p3pp6)) (6ucceeds(p3,p7)] succeeds(p3,xl) 
fol IOMS(X1,P7) 

(succteds(p3)p6)l (succeeds (p3,p7)] succeeds(p3(p8) 

(succeeds(p3,, 6)1 (succfleds(p3,p7)) [succeeds(p3,p8)l 
abels(xl,p3) 

(succeeds(p3(p6)) [succeeds(p3,p7)] (succeeds(p3,p8)) 

Proof B 

19. succeeds(p3,p3) 

20. [succeeds(p3,p3)] 

21. (succeeds(p3,p3)] 

succeeds(x2,p3) 
22. (succeeds(p3,p3)) 

(succeeds («2,p3>J 

23. (succeeds(p3,p3)] 

24. (succeeds(p3,p3)] 

(olious(xl,p6) 

25. (succeeds(p3,p3)J 

26. [succeeds(p3,p3)] 

27. isucceeds(p3,p3)) 
(ol lous(xllp7) 

28. (succeeds(p3,p3)l 

29. [succeeds(p3,p3)J 

iabeis(xl,p3) 

30. (succeeds(p3,p3)] 
31. empty 

2. SHORTBURST Example 

Proof A 

succeeds(p3,xl) succeeds(xl,p3) 

6ucceeds(p31xl) (succeeds(xl,p3)] 8ucceeds(xl,x2) 

succeeds(p3lxl) (succeeds(xl,p3)J suceepus(xl1x2) 
follous(x2,p3) 

succoodstpS.xl) [succeeds(xl,p3)] suc^eedsCxl.pB) 
succe9ds(p3>xl) [succeeds(xl,p3)J [succeeds (xl,p6)l 

succeeds (p3,p7) 
[succeeds(p3(p7)]   succeeds(p3,xl)   succeeds(xl,p7) 
(succeeds(p3,p7))   succeeds(p3(xl)   (succeeds(xl,p7)] 

(succeeds(p3,p7)] succeeds(p3>p8) 

[succeed,(p3,p7)) r^rceeds(p3,p8)) has(p8.goto(xl>) 

(succeeds(p3,p7)J [succeeds(p3,p8)) has(p8,goto(loop)) 

theorem 

extend by 16 

extend by 15 

extend by 9 

extend by 16 

extend by 15 

extend by 11 

extend by 16 

extend by 15 

extend by 13 

extend by 17 

extern by 4 

extend by 14 

theorem 

extend bq 16 

extend by 16 

extend by 15 

extend by 9 

extend by 15 

extend by 11 

extend by 16 

extend by 15 

extend by 13 

extend by 17 

extend by 4 

extend by 14 

11. succeeds(p3,p3) 

12. (succeeds(p3(p3)) succeeds(p3,xl)  succeeds(xl,p3) 
13. [succeeds (p3,p3)] succeeds(p31xl)   [succeeds(xl,p3)]   follous(xl,p3) 

[succeeds(p3,p3)J succeeds(p3)p8) 

[S'jcceeds(p3,p3)] [succeeds(p3,p8)]  has(p8,goto(xl))   labelsUl.pS) 
[succeeds(p3,p3)] (succeeds(pS.pB)) hat(p8,goto(loop)) 
empty 

14 

15 

16 
17 

theorem 

extend by 8 

extend by 7 

extend by 5 

extend by 9 

extend by 1 

extend by 6 

■ -- - 



Prooli 

3.   hfiS-PflRTS Example  i 

Proo«  0 

8. hp(J0hn,t(n2lnl).hand) theope|)) 

9. IhpUohn.UnZ.r.D.handM   hp(JohnIn2(xl)  hp(sKl (John,xl,hand,n2,nl) ,nl,hand)   extend by 4a 
10. thpUohn, t (n2,nl),hand)J   hp (John,n2,xl) 

[hp (gkl(John,xl,hand,n21nl),nllhand))   in (iK1(John,xl,hand,n2,nl).arm) 
11. Ihp(John,t(n2,nl),hand)]   hp(John,n2,arm) 

12. [np(John,t(n2,nl),hand)J   (hp(John,n2,arm))   in(John,huin^n) 

13. thp (John, t(n2,nl) .hand))   Ihp(John,n2,arm))   tin(john,hi    .n)]   in(John,bou) 
14. empty 

extend by 7 

extend by 3b 

extend by 6 

extend by 2 

extend by  1 

4.   HPS-PnRTS Example 2 

Proof   0 

A.   hpUohn, t (I (n2,nl),n5)r (mtjfjrs) 

9.    [hpvJohn,t(t (n2,nl),n5))(m(jers)J   hpUohn, t (n2,nl) ,xl) 

hp(Sk1 (John,xi,(inqors,t(n2,nl),n5),n5, fingers) 
18.    Ihp(John1 t (t (n2,nl),n5), (mgers))   hp (John, t (n2,nl) ,xl) 

[hp(sH(John>xl, fingers, t (n2>nl) ,n5) .nS, f mgers)) 
m(ski(John.xl,f ingers, t (nZ.nl),n5) .hand) 

11. HpUohn, Ht^.nD.nSJ.fmycrs))   hp( John, t (n2,nl) .hand) 

12. [hp(John,t(t(n2,nl),n5),fingers)!   Ihp(John,t(n2,nl),hand)]   hp(John,n2,xl) 

hp (skK John, xl, hand, n2)nl),nl,hand) 

13. (hp(John,t(t(n2,ni).n5),fingers)]   :hp(John, t (n2,nl) ,handi]   hpUohn.n2,xl) 

Ihp (ski(John,xl,hand,n2,nl))nl,hand)]   m (ski(John,xl,hand,n2,nl) .arm) 

14. (hp(John,t(t(n2,nl),n5),finger-.)]   [hpUohn, t (n2,ni) ,hand)]   hp(John,n2,arm) 
15. (hp(John,t(t(n2,nl),n5),finq    s)]   (np( John, t (n2,ni),hand)! 

thp(John,n2,ar ,i)]   m(John,human) 

16. thp(John.t(t(n2.nl),n5).fingers)]   [hp(John. t (n2,ni).hand)] 
Chp(John,n2,arm)J    (in Uohn, human)]    in(John,boy) 

17. empty 

Proof  B 

A.   hpUohn, t (t(n2,nl),n5), fingers) 

9.    lhp(John,t(tW,nl),n5)(fingers)]   hpUohn, t (n2,nl) ,xl) 
-in(skl(John,xl.f irgers, t ^.n' .,n5),xl) 

18. [hp(j3hn,t(t(n2,n:).n5).fingers)]   hp (John, t (n2,nl).hand) 

I-1 n (ski (John, hand, fmgers,t(n2,nl),n5), hand)) 
-hp(ski(John,hand,f ingers,t(n2,nl) ,n5) .nS, f mgers) 

11. [hp(John,t(t(r:,nl),n5),fingers)) hpUohn, t (n2,nl),hand) 

12. lhp(John,t(t(n2,nl>.n5>,fmgers)] Ihp (John, t (n2,ni) .hand)) hp(John,n2,xl) 
hp(ski(John,x1,hand,n2,nl),nl,hand) 

13. Chp(John,t(t(n2,nl),n5),fingers))   Ihp(John, t (n2,nl).hand))  hp(John,n2.xl) 

(hp (ski(John.xl.hand,n2.nl),nl>hand))   in(skl (John,xl.hand,n2,nl) .arm) 

14. [hp(John,t(t(n2.nl),n5),fingers))   Ihp(John, t (n2,nl).hand))  hp(John,n2,arm) 

15. [hpUohn,t(t(n2,nl).n';,fingers))   [hp(John, t (n2,ni) .hand)) 
thri( John. n2. arm))    in (John, human) 

16. thpUohn,t(t(n2,nl).n5).fingers))   [hp(John, t (02,01) .hand)) 
[hp(John,n2,arm))   (in(John,human))   mUohn.boy) 

17. empty 

theorem 

extend by 4a 

exteno by b 

extend by 3b 

extend by 4a 

extend by 7 

extend by 3b 

extend by 6 

extend by 2 

extend by 1 

theorem 

extend by 3a 

extend by 5b 

extend by 4b 

extend by 4a 

extend by 7 

extend by 3b 

extend by 6 

extend by 2 

extend by 1 
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Proofs 

5. PRin Exampl« 

Proof fi 

10. 
U. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
:8. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 

Pxl Dxla 
Pxl  (Dxla]   0x1x2 0x2a 
Pxl   [Oxlal  OxlgCa)   [Oglala]   -Pa 
Pxl   [Dxla]   Oxlg(a)   (Og(a)a]   I-Pa)  Daa 
Pxl   (Dxla)   OxlcjCa) 

Pf(g(a))   (Df(g(a>)a)   tDf (g(a))g(a)]  Lnlg(a) Lg(a)a 
Pf(g(a))   (Of(i|(a))a]   (Of (g(a))g(a)]  Lnlg(a)   (Lg(a>a]  -Pa 
Pf(g(a))   [Df(j(a))aJ   [Df (g(a) )g(a)] Lnlg(a)   [Lg(a>a]   i-Pa] Da« 
Pf(g(a>)   [Df(g(a))a]   [Of(g(a))g(a>]  Lnlg(a) 
Pf(g(a))   [Of(g(a))a]   tOf (g(a))g(a)l   (Lnlg(a)] -Pa 
Pf(g(a))   (Of(g(a))a]   [Of(g(a>>g(a)]   (Lrlg(a)]   [-Pa] Oaa 
Pf (g(a)) 
(Pf(g(a)>]   Lnlg(a)  Lg(a)a 
[Pf(g(a>)]  Lnlg(a)   [Lg(a)a]  -Pa 
[Pf(g(a)>]   Lnlg(a)   [Lg(a)a}   [-Pal  Oaa 
[Pf(g(a>)]   Lnlg(a> 
[Pf(g(a)>]   [Lnlg(a)]   -Pa 
[Pf(g(a))]   [Lnlg(a)]   [-Pal Oaa 
empty 

Proof B 

18. Pxl Dxla 
11. Pa 
12. [Pa]   -Lnlgfa) 
13. [Pa]   (-Lnlg(a)]   Lg(a)a -Pf(q(a)) 
14. [Pa]   [-Lnlg(a)]   Lg(a)a  (-Pf(g(a))]  0)(g(a))a 
15. (Pa]   [-Lnlq(a)]  Lg(a)a  [-Pf(g(a))]   [Ol(g(a))al  Df(g(a))xl Oxla 
16. [Pa]   [-Lnlg(a)]   Lg(a)a  [-Pf(g(a)))   [Of(g(a))a]  Of(g(a))g(a) 
17. [Pa]    [-Lnlg(a))   Lg(a)a 
18. empty 

Proof  C 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
28. 

Pxl Oxla 
Pa 
[Pa] 
[Pa] 
[Pa] 
[Pa] 
[Pa] 
(Pal 
(Pal 
[Pa] 
empty 

-Og(a>a 
[-Og(a)a] Dxlg(a)  -Oxla 
[-Dg(a)a] Dxlg(a)   [-Oxla] Pxl 
(-Og(a)a] Df(xl)g(a)   (-Of(xl)al   (Pf(xl))  Lnlxl Lxli 
[-Og(a)a] Df(g(a))g(a)   (-Of(g(a))a]   (PMqU))]  Lnig(a) 
[-Og(a)a] Of(g(a)>g(a) 
(-Dg(a)a] [Of (g(a))g(a>]  Lnlg(a) Lg(a)a 
(-Dg(a)al (D( (g(a-)g(a))   Lnlg(a) 

theorem 

extend by 2 
extend by 3a 
extend by 9b 
extend by 1 
extend by 7 
extend by 5a 
extend ~y 9b 
extend by 1 
extend by 4a 
extend by 9b 
extend by 1 
extend by P. 
extend by Sa 
extend by 9b 
extend by 1 
extend by 4a 
extend by 9b 
extend by 1 

theorem 

extend by 1 
extend by 4b 
extend by 6c 
extend by 9b 
extend by 2 
extend by 3a 
extend by 7 
extend bg 5a 

theorem 
extend by 1 
extend by 3b 
extend by 2b 
extend by 9a 
extend by 6 
extend by 5a 
extend by 4a 
extend by 7 
extend by 5a 
extend by 4a 

6.  fiNCESl Example 

Proof fl 

7. H -C 

8. H 
9. (H) J -fi 

18. [H] J [-0] B 

11. [H] J 

12. [H] [J] -K 

13. empty 

theorem 
extend by 6a 
extend by la 
extend by 4b 
extend by 5a 
extend by 2a 
extend by 3c 
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Proofs 

7. Nuni Example 

Proof  0 

7. Dab 

8. COabl Pa t\*i.b*2  Dax2 -Oaxl 
9. [Oabl Pa Hbbxl U...1 

10. [Dab] Pa Hbbxl CDaxi) nax2xl 
11. COab} Pa nbbs(b) 
12. [Dab] Pa 

13. omptij 

8. CR0UP1 Example 

theorem 

extond by la 

'educe 

uxtend by 4 

extend by 5 

extend by 2 

extend by 8 

') 

Proof R 

7. PjUDxljtxl) 
8. (Pj(xl)xlj(xl)l   Px2x3j(xl)   Px3xlx4 Px2x4J(xi; 
9. tPj(xl)xlj(xl)J   Pg(x2j(xl>)x3j(xl)  Px3xlx2 

18. (Pj(h(xlx2;)Mxlx2)j(h(xlx2)))  Pg(x2j (h(xlx2)))xlj {h(xlx2)) 
11. empty 

9.   CR0UP2 Example 

theorem 
extend by  1 
extend by  3 
extend by 4 
extend by 3 

Proo' 0 

7. Pbac 

8. IPbacl Pbxlx2 Pxlx3a Px2x3c 
9. IPbac) Pbxle Pxlca 

18. (Pbac) Pbxle [Pxlca) Px2x3xl Px3ex4 Px2x4« 

11. [Fbac) Pbxle (Pxlca) Pax2xl Px2ce 

12. (Pbac) Pbxle (Pxlca) Pacxl 
13. (Pbac) Pbxle (Pxlca) (Pacxl) Pax2x3 Px2x4c Px3x4xl 

14. iPbacJ Pbxle (Pxlca) (Pacxl) f'ax2e Px2xlc 
15. (Pbac) Pbbe (Poca) (Pacb) Paae 
16. (Pbac) Pbbe 
17. empty 

Proof B 

theorem 

extend ty 3 

extend by 2 

extend by 4 

extend by 1 

extend by 5 

extend by 3 

extend by 2 

extend by 6 

extend by 5 

extend by 5 

7. 

8. 

9. 

18. 

U. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

28. 

Pbac 

(Pbac) Pbxlx2 Pxlx3a Px2>3c 

(Pbac) Pbxla Pxlba 

(Pbac) Pbxla (Pxlba) Px2x3xl Px3bx4 Px2x4a 

(Pbac) Pbxla (Pxlba) Pax2xl Px2bt 

(Pxlba) Pabxl (Pbac) 

(Pbac) 

(Pbac) 

(Pbac) 

(Pbac) 

(Pbac) 

(Pbac) 

(Pbac) 

empty 

Pbxla 

Pbca 

(Pbca) 

(Pbca) 

(Pbca) 

(Pbca) 

(Pbca) 

(Pbca) 

Pxlx2b Px2cx3 Pxlx3a 

Paxlb Pxlce 

Pacb 

(Pacb) Paxlx2 Pxlx3c Px2x3b 

(Paco) Paxle Pxlbc 

(Pacb) Paae 

theorem 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 

extend by 
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